Détail de l'autorité
IGARSS 2018, IEEE International Geoscience And Remote Sensing Symposium, observing, understanding and forecasting the dynamics of our planet 22/07/2018 27/07/2018 Valencia Espagne Proceedings IEEE
nom du congrès :
IGARSS 2018, IEEE International Geoscience And Remote Sensing Symposium, observing, understanding and forecasting the dynamics of our planet
début du congrès :
22/07/2018
fin du congrès :
27/07/2018
ville du congrès :
Valencia
pays du congrès :
Espagne
site des actes du congrès :
|
Documents disponibles (9)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Crop-rotation structured classification using multi-source sentinel images and LPIS for crop type mapping / Simon Bailly (2018)
Titre : Crop-rotation structured classification using multi-source sentinel images and LPIS for crop type mapping Type de document : Article/Communication Auteurs : Simon Bailly , Auteur ; Sébastien Giordano , Auteur ; Loïc Landrieu , Auteur ; Nesrine Chehata , Auteur Editeur : New York : Institute of Electrical and Electronics Engineers IEEE Année de publication : 2018 Projets : 1-Pas de projet / Conférence : IGARSS 2018, IEEE International Geoscience And Remote Sensing Symposium, observing, understanding and forecasting the dynamics of our planet 22/07/2018 27/07/2018 Valencia Espagne Proceedings IEEE Importance : pp 1950 - 1953 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] champ aléatoire conditionnel
[Termes IGN] image multitemporelle
[Termes IGN] image Sentinel-MSI
[Termes IGN] surveillance agricoleRésumé : (auteur) Automatic analysis of Sentinel image time series is recommended for monitoring agricultural land use in Europe. To improve classification capacities, we propose a temporal structured classification combining Sentinel images and former vintages of the Land-Parcel IdentAutomatic analysis of Sentinel image time series is recommended for monitoring agricultural land use in Europe. To improve classification capacities, we propose a temporal structured classification combining Sentinel images and former vintages of the Land-Parcel Identification System. Inter-annual crop rotations are learned and combined with the satellite images using a Conditional Random Field. The proposed methodology is tested on a 233 km2 study area located in France and with a 25 categories national nomenclature. The classification results are globally improved.ification System. Inter-annual crop rotations are learned and combined with the satellite images using a Conditional Random Field. The proposed methodology is tested on a 233 km2 study area located in France and with a 25 categories national nomenclature. The classification results are globally improved. Numéro de notice : C2018-054 Affiliation des auteurs : LASTIG MATIS+Ext (2012-2019) Thématique : IMAGERIE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.1109/IGARSS.2018.8518427 Date de publication en ligne : 05/11/2018 En ligne : https://doi.org/10.1109/IGARSS.2018.8518427 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91343 Decision fusion of SPOT6 and multitemporal Sentinel2 images for urban area detection / Cyril Wendl (2018)
Titre : Decision fusion of SPOT6 and multitemporal Sentinel2 images for urban area detection Type de document : Article/Communication Auteurs : Cyril Wendl, Auteur ; Arnaud Le Bris , Auteur ; Nesrine Chehata , Auteur ; Anne Puissant, Auteur ; Tristan Postadjian , Auteur Editeur : New York : Institute of Electrical and Electronics Engineers IEEE Année de publication : 2018 Projets : 2-Pas d'info accessible - article non ouvert / Conférence : IGARSS 2018, IEEE International Geoscience And Remote Sensing Symposium, observing, understanding and forecasting the dynamics of our planet 22/07/2018 27/07/2018 Valencia Espagne Proceedings IEEE Importance : pp 1734 - 1737 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification dirigée
[Termes IGN] classification par réseau neuronal
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] classification pixellaire
[Termes IGN] détection du bâti
[Termes IGN] fusion d'images
[Termes IGN] image Sentinel-MSI
[Termes IGN] image SPOT 6
[Termes IGN] réseau neuronal convolutifRésumé : (auteur) Fusion of very high spatial resolution multispectral (VHR) images and lower spatial resolution image time series with more spectral bands can improve land cover classification’ combining geometric and semantic advantages of both sources. This study presents a workflow to extract the extent of urban areas using decision-level fusion of individual classifications on Sentine12 (S2) and SPOT6 satellite images. First, both sources are classified individually in five classes, using state-of-the-art supervised classification approaches and Convolutional Neural Networks. Obtained results are merged in order to extract buildings as accurately as possible. Then, detected buildings are merged again with the S2 classification to extract urban area; a prior to be in an urban area is derived from these building objects and merged with a binary classification derived from the original S2 classification. Both fusions involve a per pixel decision level fusion followed by a contrast sensitive regularization. Numéro de notice : C2018-046 Affiliation des auteurs : LASTIG MATIS+Ext (2012-2019) Thématique : IMAGERIE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.1109/IGARSS.2018.8517476 Date de publication en ligne : 05/11/2018 En ligne : https://doi.org/10.1109/IGARSS.2018.8517476 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91269 Detection and area estimation for photovoltaic panels in urban hyperspectral remote sensing data by an original NMF-based unmixing method / Moussa Sofiane Karoui (2018)
Titre : Detection and area estimation for photovoltaic panels in urban hyperspectral remote sensing data by an original NMF-based unmixing method Type de document : Article/Communication Auteurs : Moussa Sofiane Karoui, Auteur ; Fatima Zohra Benhalouche, Auteur ; Yannick Deville, Auteur ; Khelifa Djerriri, Auteur ; Xavier Briottet , Auteur ; Arnaud Le Bris , Auteur Editeur : New York : Institute of Electrical and Electronics Engineers IEEE Année de publication : 2018 Projets : HYEP / Weber, Christiane Conférence : IGARSS 2018, IEEE International Geoscience And Remote Sensing Symposium, observing, understanding and forecasting the dynamics of our planet 22/07/2018 27/07/2018 Valencia Espagne Proceedings IEEE Importance : pp 1640 - 1643 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] détection de contours
[Termes IGN] factorisation de matrice non-négative
[Termes IGN] image hyperspectrale
[Termes IGN] panneau photovoltaïque
[Termes IGN] zone urbaineRésumé : (auteur) Hyperspectral remote sensing data offer unique opportunities for the characterization of land surface in urban areas. However, no hyperspectral-unmixing based studies have been conducted to automatically detect photovoltaic panels, which represent one of the important components of energy systems in such areas. In this paper, a hyperspectral-unmixing based method is proposed to detect photovoltaic panels and to estimate their areas. This approach is based on an original multiplicative nonnegative matrix factorization (NMF) algorithm with some known photovoltaic panel spectra. The proposed method can be considered as a partial/informed NMF approach. Experiments are conducted on realistic synthetic and real data to evaluate the performance of the proposed approach. In both cases, obtained results show that the proposed method yields much better overall performance than a method from the literature. Numéro de notice : C2018-047 Affiliation des auteurs : LASTIG MATIS+Ext (2012-2019) Thématique : IMAGERIE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.1109/IGARSS.2018.8518204 Date de publication en ligne : 05/11/2018 En ligne : https://doi.org/10.1109/IGARSS.2018.8518204 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91270 Domain adaptation for large scale classification of very high resolution satellite images with deep convolutional neural networks / Tristan Postadjian (2018)
Titre : Domain adaptation for large scale classification of very high resolution satellite images with deep convolutional neural networks Type de document : Article/Communication Auteurs : Tristan Postadjian , Auteur ; Arnaud Le Bris , Auteur ; Hichem Sahbi, Auteur ; Clément Mallet , Auteur Editeur : New York : Institute of Electrical and Electronics Engineers IEEE Année de publication : 2018 Projets : 2-Pas d'info accessible - article non ouvert / Weber, Christiane Conférence : IGARSS 2018, IEEE International Geoscience And Remote Sensing Symposium, observing, understanding and forecasting the dynamics of our planet 22/07/2018 27/07/2018 Valencia Espagne Proceedings IEEE Importance : pp 3631 - 3634 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] apprentissage profond
[Termes IGN] base de données d'occupation du sol
[Termes IGN] classification
[Termes IGN] grande échelle
[Termes IGN] occupation du sol
[Termes IGN] réseau neuronal convolutifRésumé : (auteur) Semantic segmentation of remote sensing images enables in particular land-cover map generation for a given set of classes. Very recent literature has shown the superior performance of deep convolutional neural networks (DCNN) for many tasks, from object recognition to semantic labelling, including the classification of Very High Resolution (VHR) satellite images. However, while plethora of works aim at improving object delineation on geographically restricted areas, few tend to solve this classification task at very large scales. New issues occur such as intra-class class variability, diachrony between surveys, and the appearance of new classes in a specific area, that do not exist in the predefined set of labels. Therefore, this work intends to (i) perform large scale classification and to (ii) expand a set of land-cover classes, using the off-the-shelf model learnt in a specific area of interest and adapting it to unseen areas. Numéro de notice : C2018-048 Affiliation des auteurs : LASTIG MATIS+Ext (2012-2019) Thématique : IMAGERIE/INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.1109/IGARSS.2018.8518799 Date de publication en ligne : 05/11/2018 En ligne : https://doi.org/10.1109/IGARSS.2018.8518799 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91271
Titre : Forest stand extraction: which optimal remote sensing data source(s)? Type de document : Article/Communication Auteurs : Clément Dechesne , Auteur ; Clément Mallet , Auteur ; Arnaud Le Bris , Auteur ; Valérie Gouet-Brunet , Auteur Editeur : New York : Institute of Electrical and Electronics Engineers IEEE Année de publication : 2018 Projets : HYEP / Weber, Christiane Conférence : IGARSS 2018, IEEE International Geoscience And Remote Sensing Symposium, observing, understanding and forecasting the dynamics of our planet 22/07/2018 27/07/2018 Valencia Espagne Proceedings IEEE Importance : pp 7283 - 7285 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] Abies (genre)
[Termes IGN] classification dirigée
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Fagus (genre)
[Termes IGN] image hyperspectrale
[Termes IGN] image multibande
[Termes IGN] montagne
[Termes IGN] peuplement forestier
[Termes IGN] Picea abies
[Termes IGN] Pinus sylvestris
[Termes IGN] Pseudotsuga menziesii
[Termes IGN] Quercus (genre)
[Termes IGN] segmentation sémantique
[Termes IGN] semis de points
[Termes IGN] Vosges, massif desRésumé : (auteur) It has been now widely assessed in the literature that both multi/hyperspectral optical images and 3D lidar point clouds are necessary inputs for tree species based forest stand detection. Nevertheless, no comprehensive analysis of the genuine relevance of each data source has been performed so far: existing strategies are limited to a single spatial and spectral resolution. This paper investigates which is the optimal combination of geospatial optical images and lidar point clouds. A supervised semantic segmentation framework is fed with various sources (multispectral satellite and airborne images, hyperspectral airborne images, low, medium and high density lidar point clouds), ablation cases are defined, and the discrimination performance of several fusion schemes is assessed under a challenging mountainous area in France. Numéro de notice : C2018-049 Affiliation des auteurs : LASTIG MATIS (2012-2019) Thématique : IMAGERIE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.1109/IGARSS.2018.8518803 Date de publication en ligne : 05/11/2018 En ligne : https://doi.org/10.1109/IGARSS.2018.8518803 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91272 Documents numériques
peut être téléchargé
Forest stand extraction ... - pdf auteurAdobe Acrobat PDF PermalinkPotential and limits of Sentinel-1 data for small alpine glaciers monitoring / Matthias Jauvin (2018)PermalinkSentinel-2 level-1 calibration and validation status from the mission performance centre / Catherine Bouzinac (2018)PermalinkSuperpixel partitioning of very high resolution satellite images for large-scale classification perspectives with deep convolutional neural networks / Tristan Postadjian (2018)Permalink