Descripteur
Documents disponibles dans cette catégorie (59)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Modelling forest volume with small area estimation of forest inventory using GEDI footprints as auxiliary information / Shaohui Zhang in International journal of applied Earth observation and geoinformation, vol 114 (November 2022)
[article]
Titre : Modelling forest volume with small area estimation of forest inventory using GEDI footprints as auxiliary information Type de document : Article/Communication Auteurs : Shaohui Zhang, Auteur ; Cédric Vega , Auteur ; Christine Deleuze, Auteur ; Sylvie Durrieu, Auteur ; Pierre Barbillon, Auteur ; Olivier Bouriaud , Auteur ; Jean-Pierre Renaud , Auteur Année de publication : 2022 Projets : ARBRE / AgroParisTech (2007 -) Article en page(s) : n° 103072 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] données lidar
[Termes IGN] empreinte
[Termes IGN] gestion forestière
[Termes IGN] Global Ecosystem Dynamics Investigation lidar
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] inventaire forestier local
[Termes IGN] inventaire forestier national (données France)
[Termes IGN] modèle numérique de terrain
[Termes IGN] modélisation de la forêt
[Termes IGN] placette d'échantillonnage
[Termes IGN] Sologne (France)
[Termes IGN] variogramme
[Termes IGN] volume en boisRésumé : (auteur) The French National Forest Inventory provides detailed forest information up to large national and regional scales. Forest inventory for small areas of interest within a large population is equally important for decision making, such as for local forest planning and management purposes. However, sampling these small areas with sufficient ground plots is often not cost efficient. In response, small area estimation has gained increasing popularity in forest inventory. It consists of a set of techniques that enables predictions of forest attributes of subpopulation with the help of auxiliary information that compensates for the small field samples. Common sources of auxiliary information usually come from remote sensing technology, such as airborne laser scanning and satellite imagery. The newly launched NASA’s Global Ecosystem Dynamics Investigation (GEDI), a full waveform Lidar instrument, provides an unprecedented opportunity of collecting large-scale and dense forest sample plots given its sampling frequency and spatial coverage. However, the geolocation uncertainty associated with GEDI footprints create important challenges for their use for small area estimations. In this study, we designed a process that provides NFI measurements at plot level with GEDI auxiliary information from nearby footprints. We demonstrated that GEDI RH98 is equivalent to NFI dominant height at plot level. We stressed the importance of pairing NFI plots with nearby GEDI footprints, based on not only the distance in between but also their similarities, i.e., forest heights and forest types. Subsequently, these NFI-GEDI pairs were used for small area estimations following a two-phase sampling scheme. We showcased that, with an adequate sample size, small area estimation with GEDI auxiliary data can improve the accuracy of forest volume estimates. Numéro de notice : A2022-786 Affiliation des auteurs : LIF+Ext (2020- ) Autre URL associée : vers HAL Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.jag.2022.103072 Date de publication en ligne : 22/10/2022 En ligne : https://doi.org/10.1016/j.jag.2022.103072 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101890
in International journal of applied Earth observation and geoinformation > vol 114 (November 2022) . - n° 103072[article]Geostatistical analysis and mitigation of the atmospheric phase screens in Ku-band terrestrial radar interferometric observations of an alpine glacier / Simone Baffelli in IEEE Transactions on geoscience and remote sensing, vol 58 n° 11 (November 2020)
[article]
Titre : Geostatistical analysis and mitigation of the atmospheric phase screens in Ku-band terrestrial radar interferometric observations of an alpine glacier Type de document : Article/Communication Auteurs : Simone Baffelli, Auteur ; Othmar Frey, Auteur ; Irena Hajnsek, Auteur Année de publication : 2020 Article en page(s) : pp 7533 - 7556 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] Alpes
[Termes IGN] analyse spatio-temporelle
[Termes IGN] bande Ku
[Termes IGN] covariance
[Termes IGN] erreur de phase
[Termes IGN] géostatistique
[Termes IGN] glacier
[Termes IGN] image radar moirée
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] série temporelle
[Termes IGN] vapeur d'eau
[Termes IGN] variogrammeRésumé : (auteur) Terrestrial radar interferometry (TRI) can measure displacements at high temporal resolution, potentially with high accuracy. An application of this method is the observation of the surface flow velocity of steep, fast-flowing aglaciers. For these observations, the main factor limiting the accuracy of TRI observations is the spatial and temporal variabilities in the distribution of atmospheric water vapor content, causing a phase delay [atmospheric phase screen (APS)] whose magnitude is similar to the displacement phase. This contribution presents a geostatistical analysis of the spatial and temporal behaviors of the APS in Ku-Band TRI. The analysis is based on the assumption of a separable spatiotemporal covariance structure, which is tested empirically using variogram analysis. From this analysis, spatial and temporal APS statistics are estimated and used in a two-step procedure combining regression-Kriging with generalized least squares (GLS) inversion to estimate a velocity time-series. The performance of this method is evaluated by cross-validation using phase observations on stable scatterers. This analysis shows a considerable reduction in residual phase variance compared with the standard approach of combining the linear models of APS stratification and interferogram stacking. Numéro de notice : A2020-675 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2976656 Date de publication en ligne : 13/04/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2976656 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96166
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 11 (November 2020) . - pp 7533 - 7556[article]Mining regional patterns of land use with adaptive adjacent criteria / Xinmeng Tu in Cartography and Geographic Information Science, Vol 47 n° 5 (September 2020)
[article]
Titre : Mining regional patterns of land use with adaptive adjacent criteria Type de document : Article/Communication Auteurs : Xinmeng Tu, Auteur ; Zhenjie Chen, Auteur ; Beibei Wang, Auteur ; changqing Xu, Auteur Année de publication : 2020 Article en page(s) : pp 418 - 431 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] adjacence
[Termes IGN] analyse combinatoire (maths)
[Termes IGN] analyse de groupement
[Termes IGN] analyse spatio-temporelle
[Termes IGN] changement d'utilisation du sol
[Termes IGN] Chine
[Termes IGN] construction
[Termes IGN] extraction de modèle
[Termes IGN] filtrage spatiotemporel
[Termes IGN] occupation du sol
[Termes IGN] polygone
[Termes IGN] région
[Termes IGN] relation spatiale
[Termes IGN] surface cultivée
[Termes IGN] urbanisation
[Termes IGN] utilisation du sol
[Termes IGN] variogrammeRésumé : (auteur) Land use/cover changes (LULC) are complicated and regionally diverse. When mining regional patterns, the use of a spatial relationship that is determined without considering the spatial correlation among geographical objects can lead to problematic results, e.g. mistakenly treating unrelated objects as adjacent. Additionally, traditional prevalence measures are unstable for uneven datasets such as LULC, wherein some land-use change types show small numbers and uneven quantities, and valuable rules for some land-use categories may be ignored. Therefore, we proposed a regional pattern mining method. First, we developed adaptive adjacent criteria, which can be automatically generated for each specific zone to define adjacency for better spatial-temporal mining. Then, a combinational decision model was built to improve the stability of the prevalence measure, which was used to filter out the insignificant spatial-temporal rules. Furthermore, we proposed two levels of land-use pattern mining, i.e. cluster-level mining and polygon-level mining, to first discover hot-spot areas where similar land-use change has occurred frequently and then to determine the location, frequency, and change time of rules related to different land-use activities. The proposed method was used for mining the dependence of land use and regional patterns on land-use changes. Results show that the proposed method can determine the spatial dependence between the land-use categories, as well as regional patterns of land-use changes. According to our research, the study area, Xinbei District, China, is undergoing land-use change involving rapid urbanization, extensive transportation construction, and losses of farmland. Numéro de notice : A2020-487 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2020.1761452 Date de publication en ligne : 18/06/2020 En ligne : https://doi.org/10.1080/15230406.2020.1761452 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95655
in Cartography and Geographic Information Science > Vol 47 n° 5 (September 2020) . - pp 418 - 431[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 032-2020051 RAB Revue Centre de documentation En réserve L003 Disponible A spatio-temporal deformation model for laser scanning point clouds / Corinna Harmening in Journal of geodesy, vol 94 n°2 (February 2020)
[article]
Titre : A spatio-temporal deformation model for laser scanning point clouds Type de document : Article/Communication Auteurs : Corinna Harmening, Auteur ; Hans Neuner, Auteur Année de publication : 2020 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] B-Spline
[Termes IGN] collocation par moindres carrés
[Termes IGN] déformation de surface
[Termes IGN] incertitude de mesurage
[Termes IGN] modèle de déformation tectonique
[Termes IGN] modèle stochastique
[Termes IGN] modélisation spatio-temporelle
[Termes IGN] semis de points
[Termes IGN] télémétrie laser terrestre
[Termes IGN] variogrammeRésumé : (auteur) The establishment of the terrestrial laser scanner changed the analysis strategies in engineering geodesy from point-wise approaches to areal ones. During recent years, a multitude of developments regarding a laser scanner-based geometric state description were made. However, the areal deformation analysis still represents a challenge. In this paper, a spatio-temporal deformation model is developed, combining the estimation of B-spline surfaces with the stochastic modelling of deformations. The approach’s main idea is to model the acquired measuring object by means of three parts, similar to a least squares collocation: a deterministic trend, representing the undistorted object, a stochastic signal, describing a locally homogeneous deformation process, and the measuring noise, accounting for uncertainties caused by the measuring process. Due to the stochastic modelling of the deformations in the form of distance-depending variograms, the challenge of defining identical points within two measuring epochs is overcome. Based on the geodetic datum defined by the initial trend surface, a point-to-surface- and a point-to-point-comparison of the acquired data sets is possible, resulting in interpretable and meaningful deformation metrics. Furthermore, following the basic ideas of a least squares collocation, the deformation model allows a time-related space-continuous description as well as a space- and time-continuous prediction of the deformation. The developed approach is validated using simulated data sets, and the respective results are analysed and compared with respect to nominal surfaces. Numéro de notice : A2020-151 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-020-01352-0 Date de publication en ligne : 11/02/2020 En ligne : https://doi.org/10.1007/s00190-020-01352-0 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94784
in Journal of geodesy > vol 94 n°2 (February 2020)[article]A new stochastic simulation algorithm for image-based classification : Feature-space indicator simulation / Qing Wang in ISPRS Journal of photogrammetry and remote sensing, vol 152 (June 2019)
[article]
Titre : A new stochastic simulation algorithm for image-based classification : Feature-space indicator simulation Type de document : Article/Communication Auteurs : Qing Wang, Auteur ; Hua Sun, Auteur ; Ruopu Li, Auteur ; Guangxing Wang, Auteur Année de publication : 2019 Article en page(s) : pp 145 - 165 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] forêt
[Termes IGN] géostatistique
[Termes IGN] image Landsat-OLI
[Termes IGN] image SPOT 5
[Termes IGN] Mongolie intérieure (Chine)
[Termes IGN] occupation du sol
[Termes IGN] précision de la classification
[Termes IGN] utilisation du sol
[Termes IGN] variogrammeRésumé : (Auteur) Traditional parametric methods for classification of land use and land cover (LULC) types using remote sensing imagery assume a global distribution model and fail to consider local variation of categorical variables. Differently, non-parametric methods do not make any statistical assumptions but are typically sensitive to the sample sizes of training sample data that usually require a high cost to collect in the field. Geostatistical classifiers, such as indicator kriging and simulation, are local variability-based methods that exhibit great potential for image-based classification of LULC types. However, variogram models required are highly sensitive to the spatial configuration of training samples as well as sample size given a study area. Moreover, when a large number of spectral variables are considered into kriging systems, modeling the variograms and cross-variograms would be problematic. To circumvent these issues, this study extended the geostatistical methods from a 2-dimensional geographic space to a m-dimensional image feature space to derive feature-space indicator variograms (FSIVs). Moreover, a novel stochastic simulation classification algorithm, Feature-Space Indicator Simulation (FSIS), was proposed and examined for classification of LULC types in Duolun County located in Inner Mongolia and in Huang-Feng-Qiao (HFQ) forest farm, Hunan of China. In Duolun, six LULC types were involved and in HFQ a complicated forest landscape consisting of nine forest types plus water, built-up area, and agricultural/bare soil, was classified. The classification results of FSIS were compared with another feature-space geostatistical classifier – feature-space indicator kriging (FSIK), a traditional parametric method – maximum likelihood (ML), a widely used nonparametric method – support vector machine (SVM), and a recently popular method – random forest (RF). The results showed that compared with ML, SVM and RF, in both study areas FSIS statistically significantly increased the accuracy of the classifications by 10.0–29.9% for percentage correct and 19.0–47.6% for Kappa statistic. Compared with FSIK, FSIS also improved the classification accuracy but the accuracy increases were relatively smaller with the percentages correct of 3.5% and 7.6% and the Kappa values of 4.6% and 8.6% for Duolun and HFQ, respectively. Moreover, FSIS led to the spatial uncertainties of the classification estimates as the quality measure of the estimates. In addition, the results also demonstrated that FSIVs were sensitive to the within-class heterogeneity but not very much to the size of training samples. Overall, FSIS exhibited the greater potential to improve the classification accuracy of LULC and forest types using remote sensing image. Numéro de notice : A2019-457 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.04.011 Date de publication en ligne : 25/04/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.04.011 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92871
in ISPRS Journal of photogrammetry and remote sensing > vol 152 (June 2019) . - pp 145 - 165[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019061 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019063 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019062 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Embedding road networks and travel time into distance metrics for urban modelling / Henry Crosby in International journal of geographical information science IJGIS, Vol 33 n° 3-4 (March - April 2019)PermalinkExercices corrigés de géostatistique / Chantal de Fouquet (2019)PermalinkAtmospheric artifacts correction with a covariance-weighted linear model over mountainous regions / Zhongbo Hu in IEEE Transactions on geoscience and remote sensing, vol 56 n° 12 (December 2018)PermalinkObject-based crop classification using multi-temporal SPOT-5 imagery and textural features with a Random Forest classifier / Huanxue Zhang in Geocarto international, vol 33 n° 10 (October 2018)PermalinkObject-based superresolution land-cover mapping from remotely sensed imagery / Yuehong Chen in IEEE Transactions on geoscience and remote sensing, vol 56 n° 1 (January 2018)PermalinkPermalinkAn adaptive method of non-stationary variogram modeling for DEM error surface simulation / Chuanfa Chen in Transactions in GIS, vol 16 n° 6 (December 2012)PermalinkDesigning a 3D model for the prediction of the top of formation in oil fields using geostatistical methods / M. Abdideh in Geocarto international, vol 27 n° 7 (November 2012)PermalinkPermalinkPermalink