Détail de l'auteur
Auteur et al. |
Documents disponibles écrits par cet auteur (3604)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Evapotranspiration mapping of cotton fields in Brazil: comparison between SEBAL and FAO-56 method / Juan Vicente Liendro Moncada in Geocarto international, Vol 37 n° 17 ([20/08/2022])
[article]
Titre : Evapotranspiration mapping of cotton fields in Brazil: comparison between SEBAL and FAO-56 method Type de document : Article/Communication Auteurs : Juan Vicente Liendro Moncada, Auteur ; Tonny José Araújo da Silva, Auteur ; Jefferson Vieira José, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 5133 - 5149 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse comparative
[Termes IGN] carte thématique
[Termes IGN] corrélation
[Termes IGN] données météorologiques
[Termes IGN] évapotranspiration
[Termes IGN] Gossypium (genre)
[Termes IGN] GRASS
[Termes IGN] image Landsat-8
[Termes IGN] Mato Grosso
[Termes IGN] modèle de Monteith
[Termes IGN] phénologie
[Termes IGN] QGIS
[Termes IGN] régression logistique
[Termes IGN] système d'information géographiqueRésumé : (auteur) The objective was to compare the evapotranspiration of cotton (Gossypium sp. L.) estimated by the SEBAL model and the FAO-56 method, throughout the phenological cycle of the plant on eight fields located in the upper area of the Rio das Mortes basin, State of Mato Grosso—Brazil. Images from the Landsat 8 satellite were used under the Geographic Information Systems environment through the capabilities of the QGIS 3.6.2 and GRASS 7.6.1 software. The reference evapotranspiration was determined by the FAO Penman–Monteith method implementing the Ref-ET software and data from the Campo Verde meteorological station of INMET—Brazil. The R software was applied to the statistical analyses of correlation and regression. The dataset of the available stages of the cotton phenological cycle shows a strong positive correlation, with approximately 68% of the evapotranspiration variation of the SEBAL model related to the estimates of the FAO-56 method. Numéro de notice : A2022-700 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2021.1920633 Date de publication en ligne : 06/05/2021 En ligne : https://doi.org/10.1080/10106049.2021.1920633 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101559
in Geocarto international > Vol 37 n° 17 [20/08/2022] . - pp 5133 - 5149[article]Comparison of PBIA and GEOBIA classification methods in classifying turbidity in reservoirs / Douglas Stefanello Facco in Geocarto international, vol 37 n° 16 ([15/08/2022])
[article]
Titre : Comparison of PBIA and GEOBIA classification methods in classifying turbidity in reservoirs Type de document : Article/Communication Auteurs : Douglas Stefanello Facco, Auteur ; Laurindo Antonio Guasselli, Auteur ; Luis Fernando Chimelo Ruiz, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 4762 - 4783 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] analyse d'image orientée objet
[Termes IGN] bande spectrale
[Termes IGN] Brésil
[Termes IGN] centrale hydroélectrique
[Termes IGN] classification bayesienne
[Termes IGN] classification dirigée
[Termes IGN] classification et arbre de régression
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] image Landsat-OLI
[Termes IGN] segmentation d'image
[Termes IGN] turbidité des eauxRésumé : (auteur) Our goal is to compare the performance of Classification and Regression Tree, Naive Bayes and Random Forest algorithms, from supervised image classification, and approaches on Pixel-Based Image analysis (PBIA) and Geographic Object-Based Image Analysis (GEOBIA), to classify turbidity in reservoirs. Tod do so, we use Landsat 8 image and bands and spectral indices, as predictive parameters, as well as the classification algorithms based on PBIA and GEOBIA. The Brazilian Itaipu reservoir was adopted, as a case study. Our results show that the RF classifier obtained the highest accuracy in both classification approaches, followed by CART and NB. The KA and OA indices of the GEOBIA classifications were superior to the PBIA classifications in both algorithms. This study contributes with an approach to quickly and accurately delineating turbidity spectral limits in reservoirs. Numéro de notice : A2022-668 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2021.1899302 Date de publication en ligne : 22/06/2021 En ligne : https://doi.org/10.1080/10106049.2021.1899302 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101519
in Geocarto international > vol 37 n° 16 [15/08/2022] . - pp 4762 - 4783[article]Exploring tree growth allometry using two-date terrestrial laser scanning / Tuomas Yrttimaa in Forest ecology and management, vol 518 (August-15 2022)
[article]
Titre : Exploring tree growth allometry using two-date terrestrial laser scanning Type de document : Article/Communication Auteurs : Tuomas Yrttimaa, Auteur ; Ville Luoma, Auteur ; Ninni Saarinen, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 120303 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] allométrie
[Termes IGN] croissance des arbres
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] forêt boréale
[Termes IGN] houppier
[Termes IGN] semis de points
[Termes IGN] série temporelle
[Termes IGN] surface terrière
[Termes IGN] volume en boisRésumé : (auteur) Tree growth is a physio-ecological phenomena of high interest among researchers across disciplines. Observing changes in tree characteristics has conventionally required either repeated measurements of the characteristics of living trees, retrospective measurements of destructively sampled trees, or modelling. The use of close-range sensing techniques such as terrestrial laser scanning (TLS) has enabled non-destructive approaches to reconstruct the three-dimensional (3D) structure of trees and tree communities in space and time. This study aims at improving the understanding of tree allometry in general and interactions between tree growth and its neighbourhood in particular by using two-date point clouds. We investigated how variation in the increments in basal area at the breast height (Δg1.3), basal area at height corresponding to 60% of tree height (Δg06h), and volume of the stem section below 50% of tree height (Δv05h) can be explained with TLS point cloud-based attributes characterizing the spatiotemporal structure of a tree crown and crown neighbourhood, entailing the competitive status of a tree. The analyses were based on 218 trees on 16 sample plots whose 3D characteristics were obtained at the beginning (2014, T1) and at the end of the monitoring period (2019, T2) from multi-scan TLS point clouds using automatic point cloud processing methods. The results of this study showed that, within certain tree communities, strong relationships (|r| > 0.8) were observed between increments in the stem dimensions and the attributes characterizing crown structure and competition. Most often, attributes characterizing the competitive status of a tree, and the crown structure at T1, were the most important attributes to explain variation in the increments of stem dimensions. Linear mixed-effect modelling showed that single attributes could explain up to 35–60% of the observed variation in Δg1.3, Δg06h and Δv05h, depending on the tree species. This tree-level evidence of the allometric relationship between stem growth and crown dynamics can further be used to justify landscape-level analyses based on airborne remote sensing technologies to monitor stem growth through the structure and development of crown structure. This study contributes to the existing knowledge by showing that laser-based close-range sensing is a feasible technology to provide 3D characterization of stem and crown structure, enabling one to quantify structural changes and the competitive status of trees for improved understanding of the underlying growth processes. Numéro de notice : A2022-484 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.foreco.2022.120303 Date de publication en ligne : 22/05/2022 En ligne : https://doi.org/10.1016/j.foreco.2022.120303 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100899
in Forest ecology and management > vol 518 (August-15 2022) . - n° 120303[article]An automatic approach for tree species detection and profile estimation of urban street trees using deep learning and Google street view images / Kwanghun Choi in ISPRS Journal of photogrammetry and remote sensing, vol 190 (August 2022)
[article]
Titre : An automatic approach for tree species detection and profile estimation of urban street trees using deep learning and Google street view images Type de document : Article/Communication Auteurs : Kwanghun Choi, Auteur ; Wontaek LIM, Auteur ; Byungwoo Chang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 165 - 180 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] arbre urbain
[Termes IGN] détection automatique
[Termes IGN] détection d'arbres
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] gestion forestière durable
[Termes IGN] image Streetview
[Termes IGN] inventaire de la végétation
[Termes IGN] segmentation sémantique
[Termes IGN] SéoulRésumé : (auteur) Tree species and canopy structural profile (‘tree profile’) are among the most critical environmental factors in determining urban ecosystem services such as climate and air quality control from urban trees. To accurately characterize a tree profile, the tree diameter, height, crown width, and height to the lowest live branch must be all measured, which is an expensive and time-consuming procedure. Recent advances in artificial intelligence aids to efficiently and accurately measure the aforementioned tree profile parameters. This can be particularly helpful if spatially extensive and accurate street-level images provided by Google (‘streetview’) or Kakao (‘roadview’) are utilized. We focused on street trees in Seoul, the capital city of South Korea, and suggested a novel approach to create a tree profile and inventory based on deep learning algorithms. We classified urban tree species using the YOLO (You Only Look Once), one of the most popular deep learning object detection algorithms, which provides an uncomplicated method of creating datasets with custom classes. We further utilized semantic segmentation algorithm and graphical analysis to estimate tree profile parameters by determining the relative location of the interface of tree and ground surface. We evaluated the performance of the model by comparing the estimated tree heights, diameters, and locations from the model with the field measurements as ground truth. The results are promising and demonstrate the potential of the method for creating urban street tree profile inventory. In terms of tree species classification, the method showed the mean average precision (mAP) of 0.564. When we used the ideal tree images, the method also reported the normalized root mean squared error (NRMSE) for the tree height, diameter at breast height (DBH), and distances from the camera to the trees as 0.24, 0.44, and 0.41. Numéro de notice : A2022-503 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.06.004 Date de publication en ligne : 22/06/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.06.004 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101001
in ISPRS Journal of photogrammetry and remote sensing > vol 190 (August 2022) . - pp 165 - 180[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2022081 SL Revue Centre de documentation Revues en salle Disponible 081-2022083 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2022082 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Assessing structural complexity of individual scots pine trees by comparing terrestrial laser scanning and photogrammetric point clouds / Noora Tienaho in Forests, Vol 13 n° 8 (August 2022)
[article]
Titre : Assessing structural complexity of individual scots pine trees by comparing terrestrial laser scanning and photogrammetric point clouds Type de document : Article/Communication Auteurs : Noora Tienaho, Auteur ; Tuomas Yrttimaa, Auteur ; Ville Kankare, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 1305 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] analyse comparative
[Termes IGN] Finlande
[Termes IGN] hauteur des arbres
[Termes IGN] image captée par drone
[Termes IGN] photogrammétrie aérienne
[Termes IGN] Pinus sylvestris
[Termes IGN] semis de points
[Termes IGN] structure d'un peuplement forestier
[Termes IGN] structure-from-motion
[Termes IGN] télémétrie laser terrestreRésumé : (auteur) Structural complexity of trees is related to various ecological processes and ecosystem services. To support management for complexity, there is a need to assess the level of structural complexity objectively. The fractal-based box dimension (Db) provides a holistic measure of the structural complexity of individual trees. This study aimed to compare the structural complexity of Scots pine (Pinus sylvestris L.) trees assessed with Db that was generated with point cloud data from terrestrial laser scanning (TLS) and aerial imagery acquired with an unmanned aerial vehicle (UAV). UAV imagery was converted into point clouds with structure from motion (SfM) and dense matching techniques. TLS and UAV measured Db-values were found to differ from each other significantly (TLS: 1.51 ± 0.11, UAV: 1.59 ± 0.15). UAV measured Db-values were 5% higher, and the range was wider (TLS: 0.81–1.81, UAV: 0.23–1.88). The divergence between TLS and UAV measurements was found to be explained by the differences in the number and distribution of the points and the differences in the estimated tree heights and number of boxes in the Db-method. The average point density was 15 times higher with TLS than with UAV (TLS: 494,000, UAV 32,000 points/tree), and TLS received more points below the midpoint of tree heights (65% below, 35% above), while UAV did the opposite (22% below, 78% above). Compared to the field measurements, UAV underestimated tree heights more than TLS (TLS: 34 cm, UAV: 54 cm), resulting in more boxes of Db-method being needed (4–64%, depending on the box size). Forest structure (two thinning intensities, three thinning types, and a control group) significantly affected the variation of both TLS and UAV measured Db-values. Still, the divergence between the two approaches remained in all treatments. However, TLS and UAV measured Db-values were consistent, and the correlation between them was 75%. Numéro de notice : A2022-652 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/f13081305 Date de publication en ligne : 16/08/2022 En ligne : https://doi.org/10.3390/f13081305 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101499
in Forests > Vol 13 n° 8 (August 2022) . - n° 1305[article]Change detection in street environments based on mobile laser scanning: A fuzzy spatial reasoning approach / Joachim Gehrung in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 5 (August 2022)PermalinkClimatic sensitivities derived from tree rings improve predictions of the forest vegetation simulator growth and yield model / Courtney L. Giebink in Forest ecology and management, vol 517 (August-1 2022)PermalinkCrown allometry and growing space requirements of four rare domestic tree species compared to oak and beech: implications for adaptive forest management / Julia Schmucker in European Journal of Forest Research, vol 141 n° 4 (August 2022)PermalinkDetection and characterization of slow-moving landslides in the 2017 Jiuzhaigou earthquake area by combining satellite SAR observations and airborne Lidar DSM / Jiehua Cai in Engineering Geology, vol 305 (August 2022)PermalinkEstimating crop type and yield of small holder fields in Burkina Faso using multi-day Sentinel-2 / Akiko Elders in Remote Sensing Applications: Society and Environment, RSASE, Vol 27 (August 2022)PermalinkFull-waveform classification and segmentation-based signal detection of single-wavelength bathymetric LiDAR / Xue Ji in IEEE Transactions on geoscience and remote sensing, vol 60 n° 8 (August 2022)PermalinkGenerating impact maps from bomb craters automatically detected in aerial wartime images using marked point processes / Christian Kruse in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 5 (August 2022)PermalinkGround surface elevation changes over permafrost areas revealed by multiple GNSS interferometric reflectometry / Yufeng Hu in Journal of geodesy, vol 96 n° 8 (August 2022)PermalinkHyperspectral unmixing using transformer network / Preetam Ghosh in IEEE Transactions on geoscience and remote sensing, vol 60 n° 8 (August 2022)PermalinkLocation-aware neural graph collaborative filtering / Shengwen Li in International journal of geographical information science IJGIS, vol 36 n° 8 (August 2022)PermalinkMainstreaming remotely sensed ecosystem functioning in ecological niche models / Adrián Regos in Remote sensing in ecology and conservation, vol 8 n° 4 (August 2022)PermalinkMapping land-use intensity of grasslands in Germany with machine learning and Sentinel-2 time series / Maximilian Lange in Remote sensing of environment, vol 277 (August 2022)PermalinkMeasuring COVID-19 vulnerability for Northeast Brazilian municipalities: Social, economic, and demographic factors based on multiple criteria and spatial analysis / Ciro José Jardim De Figueiredo in ISPRS International journal of geo-information, vol 11 n° 8 (August 2022)PermalinkOn the satellite clock datum stability of RT-PPP product and its application in one-way timing and time synchronization / Wenfei Guo in Journal of geodesy, vol 96 n° 8 (August 2022)PermalinkRemote sensing and phytoecological methods for mapping and assessing potential ecosystem services of the Ouled Hannèche Forest in the Hodna Mountains, Algeria / Amal Louail in Forests, Vol 13 n° 8 (August 2022)PermalinkSimulation of the potential impact of urban expansion on regional ecological corridors: A case study of Taiyuan, China / Wei Hou in Sustainable Cities and Society, vol 83 (August 2022)PermalinkSpatial–spectral attention network guided with change magnitude image for land cover change detection using remote sensing images / Zhiyong Lv in IEEE Transactions on geoscience and remote sensing, vol 60 n° 8 (August 2022)PermalinkState of the climate in 2021: Global Climate / Robert J. H. Dunn in Bulletin of the American Meteorological Society, vol 103 n° 8 (August 2022)PermalinkSTICC: a multivariate spatial clustering method for repeated geographic pattern discovery with consideration of spatial contiguity / Yuhao Kang in International journal of geographical information science IJGIS, vol 36 n° 8 (August 2022)PermalinkThe influence of data density and integration on forest canopy cover mapping using Sentinel-1 and Sentinel-2 time series in Mediterranean oak forests / Vahid Nasiri in ISPRS International journal of geo-information, vol 11 n° 8 (August 2022)PermalinkTracing drought effects from the tree to the stand growth in temperate and Mediterranean forests: insights and consequences for forest ecology and management / Hans Pretzsch in European Journal of Forest Research, vol 141 n° 4 (August 2022)PermalinkTracking annual dynamics of mangrove forests in mangrove National Nature Reserves of China based on time series Sentinel-2 imagery during 2016–2020 / Rong Zhang in International journal of applied Earth observation and geoinformation, vol 112 (August 2022)PermalinkTransfer learning from citizen science photographs enables plant species identification in UAV imagery / Salim Soltani in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 5 (August 2022)PermalinkUAV-borne, LiDAR-based elevation modelling: a method for improving local-scale urban flood risk assessment / Katerina Trepekli in Natural Hazards, vol 113 n° 1 (August 2022)PermalinkUse of GIS and dasymetric mapping for estimating tsunami-affected population to facilitate humanitarian relief logistics: a case study from Phuket, Thailand / Kiatkulchai Jitt-Aer in Natural Hazards, vol 113 n° 1 (August 2022)PermalinkUsing attributes explicitly reflecting user preference in a self-attention network for next POI recommendation / Ruijing Li in ISPRS International journal of geo-information, vol 11 n° 8 (August 2022)PermalinkA model development on GIS-driven data to predict temporal daily collision through integrating Discrete Wavelet Transform (DWT) and Artificial Neural Network (ANN) algorithms; case study: Tehran-Qazvin freeway / Reza Sanayeia in Geocarto international, vol 37 n° 14 ([20/07/2022])PermalinkSegmentation and sampling method for complex polyline generalization based on a generative adversarial network / Jiawei Du in Geocarto international, vol 37 n° 14 ([20/07/2022])PermalinkPS-InSAR based validated landslide susceptibility modelling: a case study of Ghizer valley, Northern Pakistan / Sajid Hussain in Geocarto international, vol 37 n° 13 ([15/07/2022])PermalinkAdvancements in underground mine surveys by using SLAM-enabled handheld laser scanners / Artu Ellmann in Survey review, vol 54 n° 385 (July 2022)PermalinkCan machine learning improve small area population forecasts? A forecast combination approach / Irina Grossman in Computers, Environment and Urban Systems, vol 95 (July 2022)PermalinkA comparison of three multi-criteria decision-making models in mapping flood hazard areas of Northeast Penang, Malaysia / Rofiat Bunmi Mudashiru in Natural Hazards, vol 112 n° 3 (July 2022)PermalinkDetection of diseased pine trees in unmanned aerial vehicle images by using deep convolutional neural networks / Gensheng Hu in Geocarto international, vol 37 n° 12 ([01/07/2022])PermalinkDetection of GNSS no-line of sight signals using LiDAR sensors for intelligent transportation systems / Tarek Hassan in Survey review, vol 54 n° 385 (July 2022)PermalinkDiscriminative information restoration and extraction for weakly supervised low-resolution fine-grained image recognition / Tiantian Yan in Pattern recognition, vol 127 (July 2022)PermalinkEstimating generalized measures of local neighbourhood context from multispectral satellite images using a convolutional neural network / Alex David Singleton in Computers, Environment and Urban Systems, vol 95 (July 2022)PermalinkEvaluation of the GSRM2.1 and the NUVEL1-A values in Europe using SLR and VLBI based geodetic velocity fields / Mina Rahmani in Survey review, vol 54 n° 385 (July 2022)PermalinkExploring the vertical dimension of street view image based on deep learning: a case study on lowest floor elevation estimation / Huan Ning in International journal of geographical information science IJGIS, vol 36 n° 7 (juillet 2022)PermalinkA framework for urban land use classification by integrating the spatial context of points of interest and graph convolutional neural network method / Yongyang Xu in Computers, Environment and Urban Systems, vol 95 (July 2022)PermalinkFusion of GNSS and InSAR time series using the improved STRE model: applications to the San Francisco bay area and Southern California / Huineng Yan in Journal of geodesy, vol 96 n° 7 (July 2022)PermalinkGeographic knowledge graph attribute normalization: Improving the accuracy by fusing optimal granularity clustering and co-occurrence analysis / Chuan Yin in ISPRS International journal of geo-information, vol 11 n° 7 (July 2022)PermalinkGlobal forecasting of ionospheric vertical total electron contents via ConvLSTM with spectrum analysis / Jinpei Chen in GPS solutions, vol 26 n° 3 (July 2022)PermalinkHeat wave-induced augmentation of surface urban heat islands strongly regulated by rural background / Shiqi Miao in Sustainable Cities and Society, vol 82 (July 2022)PermalinkIntegration of GNSS observations with volunteered geographic information for improved navigation performance / Tarek Hassan in Journal of applied geodesy, vol 16 n° 3 (July 2022)PermalinkInteractive visual analytics of moving passenger flocks using massive smart card data / Tong Zhang in Cartography and Geographic Information Science, Vol 49 n° 4 (July 2022)Permalink