Descripteur
Termes IGN > géomatique > géopositionnement > positionnement en intérieur
positionnement en intérieurSynonyme(s)navigation en intérieur |
Documents disponibles dans cette catégorie (122)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
A new spatial database framework for pedestrian indoor navigation based on the OpenStreetMap tag information / Gift Dumedah in Transactions in GIS, vol 26 n° 7 (November 2022)
[article]
Titre : A new spatial database framework for pedestrian indoor navigation based on the OpenStreetMap tag information Type de document : Article/Communication Auteurs : Gift Dumedah, Auteur ; Abdul-Karim Wumpini Fuseini, Auteur ; Isaac Marfo, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 3090 - 3108 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] approche hiérarchique
[Termes IGN] données localisées des bénévoles
[Termes IGN] Ghana
[Termes IGN] navigation pédestre
[Termes IGN] OpenStreetMap
[Termes IGN] positionnement en intérieur
[Termes IGN] universitéRésumé : (auteur) It is widely acknowledged that the tools for pedestrian navigation in indoor environments have been increasing while the internal spaces of buildings continue to grow in complexity. The majority of mobile applications for indoor navigation are mostly dependent on access to radio-frequency identification (RFID) and WiFi, which are particularly limited and expensive in most of Sub-Saharan Africa. In addition, data from Volunteered Geographic Information such as OpenStreetMap (OSM) lacked clear framework and specification for database design for indoor navigation. Accordingly, this study proposed and illustrated a new database framework for indoor navigation by taking advantage of the popular OSM tag information structure. The proposed framework characterized the indoor environment based on horizontal and vertical partitions, together with description of indoor features by using cardinal directions and qualitative descriptions. The framework was demonstrated by creating sample database records, and retrieval of step-by-step travel information for different internal configurations of the indoor environment. A key contribution of this framework is its simplistic and low-cost nature, where user travel information is retrieved from the database with no need for communication signals from Global Positioning Systems, RFID, or WiFi, making it advantageous for low-cost applications where access to these communication infrastructure are limited. Numéro de notice : A2022-889 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1111/tgis.12998 Date de publication en ligne : 25/10/2022 En ligne : https://doi.org/10.1111/tgis.12998 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102234
in Transactions in GIS > vol 26 n° 7 (November 2022) . - pp 3090 - 3108[article]Navigation network derivation for QR code-based indoor pedestrian path planning / Jinjin Yan in Transactions in GIS, vol 26 n° 3 (May 2022)
[article]
Titre : Navigation network derivation for QR code-based indoor pedestrian path planning Type de document : Article/Communication Auteurs : Jinjin Yan, Auteur ; Jinwoo Lee, Auteur ; Sisi Zlatanova, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1240 - 1255 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] batiment commercial
[Termes IGN] bâtiment public
[Termes IGN] navigation pédestre
[Termes IGN] noeud
[Termes IGN] point d'intérêt
[Termes IGN] positionnement en intérieur
[Termes IGN] QR code
[Termes IGN] scène intérieure
[Termes IGN] trajet (mobilité)Résumé : (auteur) With the development of cities, the indoor structures of contemporary public or commercial buildings are becoming increasingly complex. Accordingly, the need for indoor navigation has arisen. Among the indoor positioning technologies, quick response (QR) code, a low-cost, easily deployable, flexible, and efficient approach, has been used for indoor positioning and navigation purposes. A navigation network (model) is a precondition for pedestrian navigation path planning. However, no thorough research has been completed to investigate the relationship between navigation networks and locations of QR codes, which may cause ambiguities when deciding the closest node from the network that should be used for path computation. Specifically, QR codes are generally placed according to preferences or certain specifications whereas current agreed navigation network derivation approaches do not consider that. This article presents a navigation network derivation approach to address the issue by integrating QR code locations as nodes in navigation networks. The present approach is demonstrated in a shopping mall case. The results show that the approach can overcome the above-mentioned issue for indoor pedestrian path planning based on the QR code localization. Numéro de notice : A2022-476 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1111/tgis.12912 Date de publication en ligne : 10/04/2022 En ligne : https://doi.org/10.1111/tgis.12912 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100823
in Transactions in GIS > vol 26 n° 3 (May 2022) . - pp 1240 - 1255[article]Automatic extraction of indoor spatial information from floor plan image: A patch-based deep learning methodology application on large-scale complex buildings / Hyunjung Kim in ISPRS International journal of geo-information, vol 10 n° 12 (December 2021)
[article]
Titre : Automatic extraction of indoor spatial information from floor plan image: A patch-based deep learning methodology application on large-scale complex buildings Type de document : Article/Communication Auteurs : Hyunjung Kim, Auteur ; Seongyong Kim, Auteur ; Kiyun Yu, Auteur Année de publication : 2021 Article en page(s) : n° 828 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] apprentissage profond
[Termes IGN] bâtiment
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection automatique
[Termes IGN] indoorGML
[Termes IGN] positionnement en intérieur
[Termes IGN] reconstruction 3D du bâtiRésumé : (auteur) Automatic floor plan analysis has gained increased attention in recent research. However, numerous studies related to this area are mainly experiments conducted with a simplified floor plan dataset with low resolution and a small housing scale due to the suitability for a data-driven model. For practical use, it is necessary to focus more on large-scale complex buildings to utilize indoor structures, such as reconstructing multi-use buildings for indoor navigation. This study aimed to build a framework using CNN (Convolution Neural Networks) for analyzing a floor plan with various scales of complex buildings. By dividing a floor plan into a set of normalized patches, the framework enables the proposed CNN model to process varied scale or high-resolution inputs, which is a barrier for existing methods. The model detected building objects per patch and assembled them into one result by multiplying the corresponding translation matrix. Finally, the detected building objects were vectorized, considering their compatibility in 3D modeling. As a result, our framework exhibited similar performance in detection rate (87.77%) and recognition accuracy (85.53%) to that of existing studies, despite the complexity of the data used. Through our study, the practical aspects of automatic floor plan analysis can be expanded. Numéro de notice : A2021-926 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10120828 Date de publication en ligne : 10/12/2021 En ligne : https://doi.org/10.3390/ijgi10120828 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99289
in ISPRS International journal of geo-information > vol 10 n° 12 (December 2021) . - n° 828[article]Variational bayesian compressive multipolarization indoor radar imaging / Van Ha Tang in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 9 (September 2021)
[article]
Titre : Variational bayesian compressive multipolarization indoor radar imaging Type de document : Article/Communication Auteurs : Van Ha Tang, Auteur ; Abdesselam Bouzerdoum, Auteur ; Son Lam Phung, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 7459 - 7474 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] acquisition comprimée
[Termes IGN] détection à travers-le-mur
[Termes IGN] estimation bayesienne
[Termes IGN] fouillis d'échos
[Termes IGN] image radar
[Termes IGN] inférence statistique
[Termes IGN] modèle stochastique
[Termes IGN] polarisation
[Termes IGN] positionnement en intérieur
[Termes IGN] reconstruction d'imageRésumé : (auteur) This article introduces a probabilistic Bayesian model for addressing the problem of compressive multipolarization through-wall radar imaging (TWRI). The proposed approach formulates the task of wall-clutter mitigation and multipolarization image reconstruction as a Bayesian inference problem for a joint distribution between observed radar measurements and latent wall-clutter matrix and indoor target images. The joint probability distribution incorporates three prior beliefs: low-dimensional structure of the wall reflections, group sparsity structure of the target images, and joint sparsity among the polarization images. These signal attributes are modeled through hierarchical priors, whose parameters and hyperparameters are treated with a full Bayesian formulation. Furthermore, this article presents a variational Bayesian inference algorithm that estimates wall-clutter and multipolarization images as posterior distributions and optimizes the model parameters and hyperparameters simultaneously. Experimental results on simulated and real radar data show that the proposed model is very effective at removing wall clutter and enhancing target localization even when the radar measurements are significantly reduced. Numéro de notice : A2021-647 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2021.3051955 Date de publication en ligne : 26/01/2021 En ligne : https://doi.org/10.1109/TGRS.2021.3051955 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98354
in IEEE Transactions on geoscience and remote sensing > Vol 59 n° 9 (September 2021) . - pp 7459 - 7474[article]Spatial knowledge acquisition with virtual semantic landmarks in mixed reality-based indoor navigation / Bing Liu in Cartography and Geographic Information Science, vol 48 n° 4 (July 2021)
[article]
Titre : Spatial knowledge acquisition with virtual semantic landmarks in mixed reality-based indoor navigation Type de document : Article/Communication Auteurs : Bing Liu, Auteur ; Linfang Ding, Auteur ; Liqiu Meng, Auteur Année de publication : 2021 Article en page(s) : pp 305 - 319 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] conception orientée utilisateur
[Termes IGN] GPS assisté pour la navigation (technologies)
[Termes IGN] hologramme
[Termes IGN] information sémantique
[Termes IGN] navigation virtuelle
[Termes IGN] point de repère
[Termes IGN] positionnement en intérieur
[Termes IGN] questionnaire
[Termes IGN] réalité mixte
[Termes IGN] téléphone intelligent
[Termes IGN] utilisateur civilRésumé : (auteur) Landmarks are essential and widely used in human navigation. However, many indoor environments lack visually salient landmarks, which leads to difficulties in navigating in and learning complex and similar-looking indoor environments. In this study, we designed and implemented virtual semantic landmarks in Mixed Reality (MR)-based indoor environments and conducted a user study to explore whether such landmarks can assist spatial knowledge acquisition during navigation. More specifically, we employed the untethered, head-mounted mixed reality device Microsoft HoloLens and used iconic holograms to show the semantic landmarks. In the user study, we used sketch map, landmark locating tasks and interview to assess the results of the spatial knowledge acquisition and collect advice on improving the MR-based navigation interface. The results show that virtual semantic landmarks can assist the acquisition of corresponding knowledge, as such landmarks were labeled second most often in landmark locating task. In addition, individual cases show that head-mounted mixed reality devices may influence not only vision, but also height or time perception of certain users. Our result can be applied to facilitate the design of MR-based navigation interfaces and assist spatial knowledge acquisition. Numéro de notice : A2021-445 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/15230406.2021.1908171 Date de publication en ligne : 22/04/2021 En ligne : https://doi.org/10.1080/15230406.2021.1908171 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97852
in Cartography and Geographic Information Science > vol 48 n° 4 (July 2021) . - pp 305 - 319[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 032-2021041 RAB Revue Centre de documentation En réserve L003 Disponible Indoor mapping and modeling by parsing floor plan images / Yijie Wu in International journal of geographical information science IJGIS, vol 35 n° 6 (June 2021)PermalinkResearch on feature extraction method of indoor visual positioning image based on area division of foreground and background / Ping Zheng in ISPRS International journal of geo-information, vol 10 n° 6 (June 2021)PermalinkVisual positioning in indoor environments using RGB-D images and improved vector of local aggregated descriptors / Longyu Zhang in ISPRS International journal of geo-information, vol 10 n° 4 (April 2021)PermalinkAn anchor-based graph method for detecting and classifying indoor objects from cluttered 3D point clouds / Fei Su in ISPRS Journal of photogrammetry and remote sensing, vol 172 (February 2021)PermalinkPermalink[Bornage, lever topographique et lever d'intérieur] / Vincent Legrand (2021)PermalinkPermalinkIntelligent sensors for positioning, tracking, monitoring, navigation and smart sensing in smart cities / Li Tiancheng (2021)PermalinkL’Ultra Wideband, un système de positionnement topographique sans satellite / Joël Van Cranenbroeck in XYZ, n° 165 (décembre 2020)PermalinkIndoor positioning using PnP problem on mobile phone images / Hana Kubickova in ISPRS International journal of geo-information, vol 9 n° 6 (June 2020)Permalink