Descripteur
Termes IGN > sciences naturelles > sciences de la Terre et de l'univers > géosciences > géophysique interne > géodésie > géodésie physique > gravimétrie > gravimétrie spatiale
gravimétrie spatiale |
Documents disponibles dans cette catégorie (29)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Applications and challenges of GRACE and GRACE follow-on satellite gravimetry / Jianli Chen in Surveys in Geophysics, vol 43 n° 1 (February 2022)
[article]
Titre : Applications and challenges of GRACE and GRACE follow-on satellite gravimetry Type de document : Article/Communication Auteurs : Jianli Chen, Auteur ; Anny Cazenave, Auteur ; Christoph Dahle, Auteur ; William Llovel, Auteur ; Isabelle Panet , Auteur ; Julia Pfeffer, Auteur ; Lorena Moreira, Auteur Année de publication : 2022 Projets : 3-projet - voir note / Article en page(s) : pp 305 - 345 Note générale : bibliographie
This project received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (GRACEFUL Synergy Grant agreement No 855677).Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] analyse diachronique
[Termes IGN] champ de gravitation
[Termes IGN] champ de pesanteur terrestre
[Termes IGN] changement climatique
[Termes IGN] cryosphère
[Termes IGN] détection de changement
[Termes IGN] données GRACE
[Termes IGN] gravimétrie spatiale
[Termes IGN] hydrosphère
[Termes IGN] masse
[Termes IGN] niveau de la merRésumé : (auteur) Time-variable gravity measurements from the Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On (GRACE-FO) missions have opened up a new avenue of opportunities for studying large-scale mass redistribution and transport in the Earth system. Over the past 19 years, GRACE/GRACE-FO time-variable gravity measurements have been widely used to study mass variations in diferent components of the Earth system, including the hydrosphere, ocean, cryosphere, and solid Earth, and signifcantly improved our understanding of long-term variability of the climate system. We carry out a comprehensive review of GRACE/GRACE-FO satellite gravimetry, time-variable gravity felds, data processing methods, and major applications in several diferent felds, includingterrestrial water storage change, global ocean mass variation, ice sheets and glaciers mass balance, and deformation of the solid Earth. We discuss in detail several major challenges we need to face when using GRACE/GRACE-FO time-variable gravity measurements to study mass changes, and how we should address them. We also discuss the potential of satellite gravimetry in detecting gravitational changes that are believed to originate from the deep Earth. The extended record of GRACE/GRACE-FO gravity series, with expected continuous improvements in the coming years, will lead to a broader range of applications and improve our understanding of both climate change and the Earth system. Numéro de notice : A2022-113 Affiliation des auteurs : UMR IPGP-Géod+Ext (2020- ) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10712-021-09685-x Date de publication en ligne : 10/01/2022 En ligne : https://doi.org/10.1007/s10712-021-09685-x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99631
in Surveys in Geophysics > vol 43 n° 1 (February 2022) . - pp 305 - 345[article]Joint inversion of ground gravity data and satellite gravity gradients between Nepal and Bhutan: New insights on structural and seismic segmentation of the Himalayan arc / Rodolphe Cattin in Physics and chemistry of the Earth (A/B/C), vol 123 (October 2021)
[article]
Titre : Joint inversion of ground gravity data and satellite gravity gradients between Nepal and Bhutan: New insights on structural and seismic segmentation of the Himalayan arc Type de document : Article/Communication Auteurs : Rodolphe Cattin, Auteur ; Théo Berthet, Auteur ; György Hetényi, Auteur ; Anita Thea Saraswati, Auteur ; Isabelle Panet , Auteur ; Stéphane Mazzotti, Auteur ; Cécilia Cadio, Auteur ; Matthieu Ferry, Auteur Année de publication : 2021 Projets : TOPO-Extreme / Cattin, Rodolphe, TOSCA / Cattin, Rodolphe Article en page(s) : n° 103002 Note générale : bibliographie
This work was supported by grants from the Agence Nationale de la Recherche ANR-18-CE01-0017 and CNES TOSCA, as well as the Swiss National Science Foundation grant PP00P2_157627 (project OROG3NY).Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] Bhoutan
[Termes IGN] gradient de gravitation
[Termes IGN] gravimétrie spatiale
[Termes IGN] Himalaya
[Termes IGN] levé gravimétrique
[Termes IGN] Népal
[Termes IGN] séismeRésumé : (auteur) Along-strike variation in the geometry of lithospheric structures is a key control parameter for the occurrence and propagation of major interplate earthquakes in subduction and collision zones. The lateral segmentation of the Himalayan arc is now well-established from various observations, including topography, gravity anomalies, exhumation rates, and present-day seismic activity. Good knowledge of the main geometric features of these segments and their boundaries is thus the next step to improve seismic hazard assessment in this area. Following recent studies, we focus our approach on the transition zone between Nepal and Bhutan where both M > 8 earthquakes and changes in the geometry of the Indian plate have been documented. Ground gravity data sets are combined with satellite gravity gradients provided by the GOCE mission (Gravity Field and Steady-State Ocean Circulation Explorer) in a joint inversion to assess the location and the geometry of this transition. We obtain a ca. 10 km wide transition zone located at the western border of Bhutan that is aligned with the Madhupur fault in the foreland and coincides with the Dhubri–Chungthang fault zone and the Yadong-Gulu rift in Himalaya and southern Tibet, respectively. This sharp segment boundary at depth can act as a barrier to earthquake rupture propagation. It can possibly restrict the size of large earthquakes and thus reduce the occurrence probability of M > 9 earthquakes along the Main Himalayan Thrust. Numéro de notice : A2021-500 Affiliation des auteurs : UMR IPGP-Géod+Ext (2020- ) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.pce.2021.103002 En ligne : https://doi.org/10.1016/j.pce.2021.103002 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98261
in Physics and chemistry of the Earth (A/B/C) > vol 123 (October 2021) . - n° 103002[article]
Titre : Remote sensing by satellite gravimetry Type de document : Monographie Auteurs : Thomas Gruber, Éditeur scientifique ; Annette Eicker, Éditeur scientifique ; Frank Flechtner, Éditeur scientifique Editeur : Bâle [Suisse] : Multidisciplinary Digital Publishing Institute MDPI Année de publication : 2021 Importance : 286 p. Format : 16 x 24 cm ISBN/ISSN/EAN : 978-3-0365-0009-6 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] bilan de masse
[Termes IGN] CHAMP (satellite)
[Termes IGN] champ de pesanteur terrestre
[Termes IGN] données GOCE
[Termes IGN] données GRACE
[Termes IGN] géocentre
[Termes IGN] gradient de gravitation
[Termes IGN] gravimétrie spatiale
[Termes IGN] nivellement par GPS
[Termes IGN] orbitographie
[Termes IGN] télémétrie laser sur satelliteRésumé : (auteur) Over the last two decades, satellite gravimetry has become a new remote sensing technique that provides a detailed global picture of the physical structure of the Earth. With the CHAMP, GRACE, GOCE and GRACE Follow-On missions, mass distribution and mass transport in the Earth system can be systematically observed and monitored from space. A wide range of Earth science disciplines benefit from these data, enabling improvements in applied models, providing new insights into Earth system processes (e.g., monitoring the global water cycle, ice sheet and glacier melting or sea-level rise) or establishing new operational services. Long time series of mass transport data are needed to disentangle anthropogenic and natural sources of climate change impacts on the Earth system. In order to secure sustained observations on a long-term basis, space agencies and the Earth science community are currently planning future satellite gravimetry mission concepts to enable higher accuracy and better spatial and temporal resolution. This Special Issue provides examples of recent improvements in gravity observation techniques and data processing and analysis, applications in the fields of hydrology, glaciology and solid Earth based on satellite gravimetry data, as well as concepts of future satellite constellations for monitoring mass transport in the Earth system. Note de contenu : 1- The GFZ GRACE RL06 monthly gravity field time series: Processing details and quality assessment
2- SLR, GRACE and swarm gravity field determination and combination
3- A new approach to Earth’s gravity field modeling using GPS-derived kinematic orbits and baselines
4- Improved estimates of geocenter variability from time-variable gravity and ocean model outputs
5- An assessment of the GOCE high-level processing facility (HPF) released global geopotential models with regional test results in Turkey
6- Next-generation gravity missions: Sino-European numerical simulation comparison exercise
7- Combination analysis of future polar-type gravity mission and GRACE follow-on
8- Gravity field recovery using high-precision, high–low inter-satellite links
9- High-resolution mass trends of the Antarctic ice sheet through a spectral combination of satellite gravimetry and radar altimetry observations
10- The rapid and steady mass loss of the Patagonian icefields throughout the GRACE era: 2002–2017
11- Downscaling GRACE TWSA data into high-resolution groundwater level anomaly using machine learning-based models in a glacial aquifer system
12- Hydrologic mass changes and their implications in Mediterranean-climate Turkey from GRACE measurements
13- GOCE-derived coseismic gravity gradient changes caused by the 2011 Tohoku-Oki earthquakeNuméro de notice : 28391 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Recueil / ouvrage collectif DOI : 10.3390/books978-3-0365-0009-6 En ligne : https://doi.org/10.3390/books978-3-0365-0009-6 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98720 From space to lithosphere: inversion of the GOCE gravity gradients. Supply to the Earth’s interior study / Matthieu Plasman in Geophysical journal international, vol 223 n° 1 (October 2020)
[article]
Titre : From space to lithosphere: inversion of the GOCE gravity gradients. Supply to the Earth’s interior study Type de document : Article/Communication Auteurs : Matthieu Plasman, Auteur ; Christel Tiberi, Auteur ; Cécilia Cadio, Auteur ; Anita Thea Saraswati, Auteur ; Gwendoline Pajot-Métivier , Auteur ; Michel Diament , Auteur Année de publication : 2020 Projets : 3-projet - voir note / Cattin, Rodolphe Article en page(s) : pp 398 - 419 Note générale : bibliographie
TOSCA project financing (PIGGS project)Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] anomalie de pesanteur
[Termes IGN] données GOCE
[Termes IGN] géophysique interne
[Termes IGN] gradient de gravitation
[Termes IGN] gravimétrie spatiale
[Termes IGN] lithosphère
[Termes IGN] problème inverseRésumé : (auteur) The emergence of high resolution satellite measurements of the gravitational field (GOCE mission) offers promising perspectives for the study of the Earth’s interior. These new data call for the development of innovant analysis and interpretation methods. Here we combine a forward prism computation with a Bayesian resolution approach to invert for these gravity gradient data configuration. We apply and test our new method on satellite data configuration, that is 225 km height with a global and homogeneous geographic distribution. We first quantify the resolution of our method according to both data and parametrization characteristics. It appears that for reasonable density contrast values (0.1 g cm−3) crustal structures have to be wider than ∼28 km to be detectable in the GOCE signal. Deeper bodies are distinguishable for greater size (35 km size at 50 km depth, ∼80 km at 300 km depth). We invert the six tensor components, among which five are independent. By carefully testing each of them and their different combinations, we enlighten a trade off between the recovery of data and the sensitivity to inversion parameters. We particularly discussed this characteristic in terms of geometry of the synthetic model tested (structures orientation, 3-D geometry, etc.). In terms of RMS value, each component is always better explained if inverted solely, but the result is strongly affected by the inversion parametrization (smoothing, variances, etc.). On the contrary, the simultaneous inversion of several components displays a significant improvement for the global tensor recovery, more dependent on data than on density variance or on smoothness control. Comparing gravity and gradient inversions, we highlight the superiority of the GG data to better reproduce the structures especially in terms of vertical location. We successfully test our method on a realistic case of a complex subduction case for both gradient and gravity data. While the imaging of small crustal structures requires terrestrial gravity data set, the longest wavelength of the slab is well recovered with both data sets. The precision and homogeneous coverage of GOCE data however, counterbalance the heterogeneous and often quite non-existence coverage of terrestrial gravity data. This is particularly true in large areas which requires a coherent assemblage of heterogeneous data sets, or in high relief, vegetally covered and offshore zones. Numéro de notice : A2020-823 Affiliation des auteurs : UMR IPGP-Géod+Ext (2020- ) Autre URL associée : vers HAL Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1093/gji/ggaa318 Date de publication en ligne : 26/06/2020 En ligne : https://doi.org/10.1093/gji/ggaa318 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97260
in Geophysical journal international > vol 223 n° 1 (October 2020) . - pp 398 - 419[article]Using quantum optical sensors for determining the Earth’s gravity field from space / Jurgen Müller in Journal of geodesy, vol 94 n° 8 (August 2020)
[article]
Titre : Using quantum optical sensors for determining the Earth’s gravity field from space Type de document : Article/Communication Auteurs : Jurgen Müller, Auteur ; Hu Wu, Auteur Année de publication : 2020 Article en page(s) : n° 71 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] capteur optique
[Termes IGN] champ de pesanteur terrestre
[Termes IGN] données GOCE
[Termes IGN] données GRACE
[Termes IGN] gradient
[Termes IGN] gradiomètre
[Termes IGN] gravimétrie spatiale
[Termes IGN] horloge du satellite
[Termes IGN] incertitude temporelle
[Termes IGN] longueur d'onde
[Termes IGN] onde myriamétrique
[Termes IGN] optique quantiqueRésumé : (auteur) Quantum optical technology provides an opportunity to develop new kinds of gravity sensors and to enable novel measurement concepts for gravimetry. Two candidates are considered in this study: the cold atom interferometry (CAI) gradiometer and optical clocks. Both sensors show a high sensitivity and long-term stability. They are assumed on board of a low-orbit satellite like gravity field and steady-state ocean circulation explorer (GOCE) and gravity recovery and climate experiment (GRACE) to determine the Earth’s gravity field. Their individual contributions were assessed through closed-loop simulations which rigorously mapped the sensors’ sensitivities to the gravity field coefficients. Clocks, which can directly obtain the gravity potential (differences) through frequency comparison, show a high sensitivity to the very long-wavelength gravity field. In the GRACE orbit, clocks with an uncertainty level of 1.0×10−18 are capable to retrieve temporal gravity signals below degree 12, while 1.0×10−17 clocks are useful for detecting the signals of degree 2 only. However, it poses challenges for clocks to achieve such uncertainties in a short time. In space, the CAI gradiometer is expected to have its ultimate sensitivity and a remarkable stability over a long time (measurements are precise down to very low frequencies). The three diagonal gravity gradients can properly be measured by CAI gradiometry with a same noise level of 5.0 mE/Hz−−−√. They can potentially lead to a 2–5 times better solution of the static gravity field than that of GOCE above degree and order 50, where the GOCE solution is mainly dominated by the gradient measurements. In the lower degree part, benefits from CAI gradiometry are still visible, but there, solutions from GRACE-like missions are superior. Numéro de notice : A2020-537 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-020-01401-8 Date de publication en ligne : 24/07/2020 En ligne : https://doi.org/10.1007/s00190-020-01401-8 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95730
in Journal of geodesy > vol 94 n° 8 (August 2020) . - n° 71[article]Combination of GRACE monthly gravity fields on the normal equation level / Ulrich Meyer in Journal of geodesy, vol 93 n° 9 (September 2019)PermalinkMass variation observing system by high low inter-satellite links (MOBILE) : a new concept for sustained observation of mass transport from space / Roland Pail in Journal of geodetic science, vol 9 n° 1 (January 2019)PermalinkHigh performance clocks and gravity field determination / Jurgen Müller in Space Science Reviews, vol 214 n° 1 (February 2018)PermalinkInverting Glacial Isostatic Adjustment signal using Bayesian framework and two linearly relaxing rheologies / Lambert Caron in Geophysical journal international, vol 209 n° 2 (May 2017)PermalinkPermalinkGRACE era variability in the Earth's oblateness: a comparison of estimates from six different sources / Thierry Meyrath in Geophysical journal international, vol 208 n° 2 (February 2017)PermalinkUtilization of high-resolution EGM2008 gravity data for geological exploration over the Singhbhum-Orissa Craton, India / S.K. Pal in Geocarto international, vol 31 n° 7 - 8 (July - August 2016)PermalinkPermalinkScience and user needs for observing global mass transport to understand global change and to benefit society / Roland Pail in Surveys in Geophysics, vol 36 n° 6 (November 2015)PermalinkPermalink