IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) . vol 42 n° 4Paru le : 01/04/2004 |
[n° ou bulletin]
est un bulletin de IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) (1986 -)
[n° ou bulletin]
|
Exemplaires(1)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
065-04041 | RAB | Revue | Centre de documentation | En réserve L003 | Disponible |
Dépouillements
Ajouter le résultat dans votre panierThe determination of the atmospheric optical thickness over western Europe using SeaWiFS imagery / A.A. Kokhanovsky in IEEE Transactions on geoscience and remote sensing, vol 42 n° 4 (April 2004)
[article]
Titre : The determination of the atmospheric optical thickness over western Europe using SeaWiFS imagery Type de document : Article/Communication Auteurs : A.A. Kokhanovsky, Auteur ; W. Hoyningen-Huene, Auteur ; et al., Auteur Année de publication : 2004 Article en page(s) : pp 824 - 832 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] aérosol
[Termes IGN] atmosphère terrestre
[Termes IGN] effet atmosphérique
[Termes IGN] épaisseur optique
[Termes IGN] Europe occidentale
[Termes IGN] image optique
[Termes IGN] image Seawifs
[Termes IGN] nuage
[Termes IGN] transfert radiatifRésumé : (Auteur) The first results obtained from the aerosol-cloud retrieval algorithm (developed at the University of Bremen) are presented. The algorithm enables the observation of the regional characteristics of aerosol and cloud optical thickness both over land and ocean surfaces. The aerosol and cloud optical thickness over Western Europe is derived from the high-resolution SeaWiFS data for October 11, 2001 (11:30 UTC). The most probable value of the aerosol optical thickness was found to be equal approximately 0.25. The frequency distributions of the aerosol and cloud optical thickness are skewed and have long tails for larger optical thickness. It was found that retrieved values of the aerosol optical thickness at wavelengths 0.412 and 0.440 um are close to those measured by five ground-based instruments placed at different locations. The problems related to the retrieval of the atmospheric optical thickness from space are discussed. Numéro de notice : A2004-186 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2003.819880 En ligne : https://doi.org/10.1109/TGRS.2003.819880 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=26713
in IEEE Transactions on geoscience and remote sensing > vol 42 n° 4 (April 2004) . - pp 824 - 832[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-04041 RAB Revue Centre de documentation En réserve L003 Disponible Linear mixture analysis-based compression for hyperspectral image analysis / Q. Du in IEEE Transactions on geoscience and remote sensing, vol 42 n° 4 (April 2004)
[article]
Titre : Linear mixture analysis-based compression for hyperspectral image analysis Type de document : Article/Communication Auteurs : Q. Du, Auteur ; C.I. Chang, Auteur Année de publication : 2004 Article en page(s) : pp 875 - 891 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse d'image numérique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] compression de données
[Termes IGN] image AVIRIS
[Termes IGN] image hyperspectraleRésumé : (Auteur) Due to significantly improved spectral resolution produced by hyperspectral sensors, the hand-to-hand correlation is generally very high and can be removed without loss of crucial information. Data compression is an effective means to eliminate such redundancy resulting from high interband correlation. In hyperspectral imagery, various information comes from different signal sources, which include man-made targets, natural backgrounds, unknown clutters, interferers, unidentified anomalies, etc. In many applications, whether or not a compression technique is effective is measured by the degree of information loss rather than information recovery. For example, compression of noise or interferers is highly desirable to image analysis and interpretation. In this paper, we present an unsupervised fully constrained least squares (UFCLS) linear spectral mixture analysis (LSMA)-based compression technique for hyperspectral target detection and classification. Unlike most compression techniques, which deal directly with grayscale images, the proposed compression approach generates and encodes the fractional abundance images of targets of interest present in an image scene to achieve data compression. Since the vital information used for image analysis is generally preserved and retained in these fractional abundance images, the loss of information may have little impact on image analysis. On some occasions, it even improves performance analysis. Airborne Visible/InfraRed Imaging Spectrometer (AVIRIS) and Hyperspectral Digital Imagery Collection Experiment (HYDICE) data are used for experiments to evaluate our proposed LSMA-based compression technique used for applications in hyperspectral detection and image classification. The classification results using the original data and the UFCLS-decompressed data are shown to be very close with no visible difference. But a compression ratio for the HYDICE data with water bands removed can achieve as high as 138: 1 with peak SNR (PSNR) 33 dB, while a compression ratio of the AVIRIS scene also with water bands removed is 90: 1 with PSNR 40 dB. Numéro de notice : A2004-187 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2003.816668 En ligne : https://doi.org/10.1109/TGRS.2003.816668 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=26714
in IEEE Transactions on geoscience and remote sensing > vol 42 n° 4 (April 2004) . - pp 875 - 891[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-04041 RAB Revue Centre de documentation En réserve L003 Disponible Classifying land development in high-resolution panchromatic satellite images using straight-line statistics / C. Unsalan in IEEE Transactions on geoscience and remote sensing, vol 42 n° 4 (April 2004)
[article]
Titre : Classifying land development in high-resolution panchromatic satellite images using straight-line statistics Type de document : Article/Communication Auteurs : C. Unsalan, Auteur ; K.L. Boyer, Auteur Année de publication : 2004 Article en page(s) : pp 907 - 919 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] aménagement du territoire
[Termes IGN] classificateur non paramétrique
[Termes IGN] classificateur paramétrique
[Termes IGN] détection de contours
[Termes IGN] image à haute résolution
[Termes IGN] image panchromatique
[Termes IGN] méthode robuste
[Termes IGN] objet géographique linéaire
[Termes IGN] périphérie urbaine
[Termes IGN] zone rurale
[Termes IGN] zone urbaineRésumé : (Auteur) We introduce a set of measures based on straight lines to assess land development levels in high-resolution (1 m) panchromatic satellite images. Most urban areas locally (such as in a 400 x 400 M2 area) exhibit a preponderance of straight-line features, generally appearing in fairly simple quasi-periodic organizations. Wilderness and rural areas produce line structures in more random spatial arrangements. We use this observation to perform an initial triage on the image to restrict the attention of subsequent more computationally intensive analyses. Statistical measures based on straight lines guide the analysis. We base these measures on length, contrast, orientation, periodicity, and location. On these, we trained and tested parametric and nonparametric classifiers. These tests were for a two-class problem (urban versus rural). However, because our ultimate goal is to extract residential regions, we then extended these ideas to address the detection of suburban regions. To do so, some use of spatial coherence is required; suburban regions are especially difficult to detect. Therefore, we introduce a decision system to perform suburban region classification via an overlapping voting method for consensus discovery. Our data were taken from regions all around the world, which underscores the robustness of our approach. Based on extensive testing, we can report very promising results in distinguishing developed areas. Numéro de notice : A2004-188 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2003.818835 En ligne : https://doi.org/10.1109/TGRS.2003.818835 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=26715
in IEEE Transactions on geoscience and remote sensing > vol 42 n° 4 (April 2004) . - pp 907 - 919[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-04041 RAB Revue Centre de documentation En réserve L003 Disponible