Descripteur
Termes IGN > sciences naturelles > sciences de la Terre et de l'univers > géosciences > géographie physique > hydrographie > turbidité des eaux
turbidité des eauxVoir aussi |
Documents disponibles dans cette catégorie (33)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Comparison of PBIA and GEOBIA classification methods in classifying turbidity in reservoirs / Douglas Stefanello Facco in Geocarto international, vol 37 n° 16 ([15/08/2022])
[article]
Titre : Comparison of PBIA and GEOBIA classification methods in classifying turbidity in reservoirs Type de document : Article/Communication Auteurs : Douglas Stefanello Facco, Auteur ; Laurindo Antonio Guasselli, Auteur ; Luis Fernando Chimelo Ruiz, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 4762 - 4783 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] analyse d'image orientée objet
[Termes IGN] bande spectrale
[Termes IGN] Brésil
[Termes IGN] centrale hydroélectrique
[Termes IGN] classification bayesienne
[Termes IGN] classification dirigée
[Termes IGN] classification et arbre de régression
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] image Landsat-OLI
[Termes IGN] segmentation d'image
[Termes IGN] turbidité des eauxRésumé : (auteur) Our goal is to compare the performance of Classification and Regression Tree, Naive Bayes and Random Forest algorithms, from supervised image classification, and approaches on Pixel-Based Image analysis (PBIA) and Geographic Object-Based Image Analysis (GEOBIA), to classify turbidity in reservoirs. Tod do so, we use Landsat 8 image and bands and spectral indices, as predictive parameters, as well as the classification algorithms based on PBIA and GEOBIA. The Brazilian Itaipu reservoir was adopted, as a case study. Our results show that the RF classifier obtained the highest accuracy in both classification approaches, followed by CART and NB. The KA and OA indices of the GEOBIA classifications were superior to the PBIA classifications in both algorithms. This study contributes with an approach to quickly and accurately delineating turbidity spectral limits in reservoirs. Numéro de notice : A2022-668 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2021.1899302 Date de publication en ligne : 22/06/2021 En ligne : https://doi.org/10.1080/10106049.2021.1899302 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101519
in Geocarto international > vol 37 n° 16 [15/08/2022] . - pp 4762 - 4783[article]How can Sentinel-2 contribute to seagrass mapping in shallow, turbid Baltic Sea waters? / Katja Kuhwald in Remote sensing in ecology and conservation, vol 8 n° 3 (June 2022)
[article]
Titre : How can Sentinel-2 contribute to seagrass mapping in shallow, turbid Baltic Sea waters? Type de document : Article/Communication Auteurs : Katja Kuhwald, Auteur ; Jens Schneider Von Deimling, Auteur ; Philipp Schubert, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 328 - 346 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Allemagne
[Termes IGN] Baltique, mer
[Termes IGN] carte thématique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] eaux côtières
[Termes IGN] fond marin
[Termes IGN] herbier marin
[Termes IGN] image aérienne
[Termes IGN] image Sentinel-MSI
[Termes IGN] lidar bathymétrique
[Termes IGN] turbidité des eauxRésumé : (auteur) Seagrass meadows are one of the most important benthic habitats in the Baltic Sea. Nevertheless, spatially continuous mapping data of Zostera marina, the predominant seagrass species in the Baltic Sea, are lacking in the shallow coastal waters. Sentinel-2 turned out to be valuable for mapping coastal benthic habitats in clear waters, whereas knowledge in turbid waters is rare. Here, we transfer a clear water mapping approach to turbid waters to assess how Sentinel-2 can contribute to seagrass mapping in the Western Baltic Sea. Sentinel-2 data were atmospherically corrected using ACOLITE and subsequently corrected for water column effects. To generate a data basis for training and validating random forest classification models, we developed an upscaling approach using video transect data and aerial imagery. We were able to map five coastal benthic habitats: bare sand (25 km²), sand dominated (16 km²), seagrass dominated (7 km²), dense seagrass (25 km²) and mixed substrates with red/ brown algae (3.5 km²) in a study area along the northern German coastline. Validation with independent data pointed out that water column correction does not significantly improve classification results compared to solely atmospherically corrected data (balanced overall accuracies ~0.92). Within optically shallow waters (0–4 m), per class and overall balanced accuracies (>0.82) differed marginally depending on the water depth. Overall balanced accuracy became worse ( Numéro de notice : A2022-499 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1002/rse2.246 Date de publication en ligne : 07/12/2021 En ligne : https://doi.org/10.1002/rse2.246 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100995
in Remote sensing in ecology and conservation > vol 8 n° 3 (June 2022) . - pp 328 - 346[article]Spatial variability of suspended sediments in San Francisco Bay, California / Niky C. Taylor in Remote sensing, vol 13 n° 22 (November-2 2021)
[article]
Titre : Spatial variability of suspended sediments in San Francisco Bay, California Type de document : Article/Communication Auteurs : Niky C. Taylor, Auteur ; Raphael M. Kudela, Auteur Année de publication : 2021 Article en page(s) : n° 4625 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] baie
[Termes IGN] échantillonnage
[Termes IGN] estuaire
[Termes IGN] image Sentinel-MSI
[Termes IGN] pas d'échantillonnage au sol
[Termes IGN] qualité des eaux
[Termes IGN] réflectance
[Termes IGN] San Francisco
[Termes IGN] sédiment
[Termes IGN] spectroradiométrie
[Termes IGN] surface de l'eau
[Termes IGN] surveillance du littoral
[Termes IGN] turbidité des eaux
[Termes IGN] variabilitéRésumé : (auteur) Understanding spatial variability of water quality in estuary systems is important for making monitoring decisions and designing sampling strategies. In San Francisco Bay, the largest estuary system on the west coast of North America, tracking the concentration of suspended materials in water is largely limited to point measurements with the assumption that each point is representative of its surrounding area. Strategies using remote sensing can expand monitoring efforts and provide a more complete view of spatial patterns and variability. In this study, we (1) quantify spatial variability in suspended particulate matter (SPM) concentrations at different spatial scales to contextualize current in-water point sampling and (2) demonstrate the potential of satellite and shipboard remote sensing to supplement current monitoring methods in San Francisco Bay. We collected radiometric data from the bow of a research vessel on three dates in 2019 corresponding to satellite overpasses by Sentinel-2, and used established algorithms to retrieve SPM concentrations. These more spatially comprehensive data identified features that are not picked up by current point sampling. This prompted us to examine how much variability exists at spatial scales between 20 m and 10 km in San Francisco Bay using 10 m resolution Sentinel-2 imagery. We found 23–80% variability in SPM at the 5 km scale (the scale at which point sampling occurs), demonstrating the risk in assuming limited point sampling is representative of a 5 km area. In addition, current monitoring takes place along a transect within the Bay’s main shipping channel, which we show underestimates the spatial variance of the full bay. Our results suggest that spatial structure and spatial variability in the Bay change seasonally based on freshwater inflow to the Bay, tidal state, and wind speed. We recommend monitoring programs take this into account when designing sampling strategies, and that end-users account for the inherent spatial uncertainty associated with the resolution at which data are collected. This analysis also highlights the applicability of remotely sensed data to augment traditional sampling strategies. In sum, this study presents ways to supplement water quality monitoring using remote sensing, and uses satellite imagery to make recommendations for future sampling strategies. Numéro de notice : A2021-839 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs13224625 Date de publication en ligne : 17/11/2021 En ligne : https://doi.org/10.3390/rs13224625 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99022
in Remote sensing > vol 13 n° 22 (November-2 2021) . - n° 4625[article]Diffuse attenuation coefficient (Kd) from ICESat-2 ATLAS spaceborne Lidar using random-forest regression / Forrest Corcoran in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 11 (November 2021)
[article]
Titre : Diffuse attenuation coefficient (Kd) from ICESat-2 ATLAS spaceborne Lidar using random-forest regression Type de document : Article/Communication Auteurs : Forrest Corcoran, Auteur ; Christopher E. Parrish, Auteur Année de publication : 2021 Article en page(s) : pp 831 - 840 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage automatique
[Termes IGN] arbre de décision
[Termes IGN] capteur spatial
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données ICEsat
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] forme d'onde
[Termes IGN] littoral
[Termes IGN] modèle de régression
[Termes IGN] semis de points
[Termes IGN] turbidité des eauxRésumé : (Auteur) This study investigates a new method for measuring water turbidity—specifically, the diffuse attenuation coefficient of downwelling irradiance Kd —using data from a spaceborne, green-wavelength lidar aboard the National Aeronautics and Space Administration's ICESat-2 satellite. The method enables us to fill nearshore data voids in existing Kd data sets and provides a more direct measurement approach than methods based on passive multispectral satellite imagery. Furthermore, in contrast to other lidar-based methods, it does not rely on extensive signal processing or the availability of the system impulse response function, and it is designed to be applied globally rather than at a specific geographic location. The model was tested using Kd measurements from the National Oceanic and Atmospheric Administration's Visible Infrared Imaging Radiometer Suite sensor at 94 coastal sites spanning the globe, with Kd values ranging from 0.05 to 3.6 m –1 . The results demonstrate the efficacy of the approach and serve as a benchmark for future machine-learning regression studies of turbidity using ICESat-2. Numéro de notice : A2021-896 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.21-00013R2 Date de publication en ligne : 01/11/2021 En ligne : https://doi.org/10.14358/PERS.21-00013R2 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99272
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 11 (November 2021) . - pp 831 - 840[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2021111 SL Revue Centre de documentation Revues en salle Disponible Atmospheric correction of Sentinel-3/OLCI data for mapping of suspended particulate matter and chlorophyll-a concentration in Belgian turbid coastal waters / Quinten Vanhellemont in Remote sensing of environment, Vol 256 (April 2020)
[article]
Titre : Atmospheric correction of Sentinel-3/OLCI data for mapping of suspended particulate matter and chlorophyll-a concentration in Belgian turbid coastal waters Type de document : Article/Communication Auteurs : Quinten Vanhellemont, Auteur ; Kevin Ruddick, Auteur Année de publication : 2021 Article en page(s) : n° 112284 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Belgique
[Termes IGN] chlorophylle
[Termes IGN] correction atmosphérique
[Termes IGN] eaux côtières
[Termes IGN] image Sentinel-OLCI
[Termes IGN] particule
[Termes IGN] rayonnement infrarouge
[Termes IGN] réflectance
[Termes IGN] turbidité des eauxRésumé : (auteur) The performance of different atmospheric correction algorithms for the Ocean and Land Colour Instrument (OLCI) on board of Sentinel-3 (S3) is evaluated for retrieval of water-leaving radiance reflectance, and derived parameters chlorophyll-a concentration and turbidity in turbid coastal waters in the Belgian Coastal Zone (BCZ). This is performed using in situ measurements from an autonomous pan-and-tilt hyperspectral radiometer system (PANTHYR). The PANTHYR provides validation data for any satellite band between 400 and 900 nm, with the deployment in the BCZ of particular interest due to the wide range of observed Near-InfraRed (NIR) reflectance. The Dark Spectrum Fitting (DSF) atmospheric correction algorithm is adapted for S3/OLCI processing in ACOLITE, and its performance and that of 5 other processing algorithms (L2-WFR, POLYMER, C2RCC, SeaDAS, and SeaDAS-ALT) is compared to the in situ measured reflectances. Water turbidities across the matchups in the Belgian Coastal Zone are about 20–100 FNU, and the overall performance is best for ACOLITE and L2-WFR, with the former providing lowest relative (Mean Absolute Relative Difference, MARD 7–27%) and absolute errors (Mean Average Difference, MAD -0.002, Root Mean Squared Difference, RMSD 0.01–0.016) in the bands between 442 and 681 nm. L2-WFR provides the lowest errors at longer NIR wavelengths (754–885 nm). The algorithms that assume a water reflectance model, i.e. POLYMER and C2RCC, are at present not very suitable for processing imagery over the turbid Belgian coastal waters, with especially the latter introducing problems in the 665 and 709 nm bands, and hence the chlorophyll-a and turbidity retrievals. This may be caused by their internal model and/or training dataset not being well adapted to the waters encountered in the BCZ. The 1020 nm band is used most frequently by ACOLITE/DSF for the estimation of the atmospheric path reflectance (67% of matchups), indicating its usefulness for turbid water atmospheric correction. Turbidity retrieval using a single band algorithm showed good performance for L2-WFR and ACOLITE compared to PANTHYR for e.g. the 709 nm band (MARD 15 and 17%), where their reflectances were also very close to the in situ observations (MARD 11%). For the retrieval of chlorophyll-a, all methods except C2RCC gave similar performance, due to the RedEdge band-ratio algorithm being robust to typical spectrally flat atmospheric correction errors. C2RCC does not retain the spectral relationship in the Red and RedEdge bands, and hence its chlorophyll-a concentration retrieval is not at all reliable in Belgian coastal waters. L2-WFR and ACOLITE show similar performance compared to in situ radiometry, but due to the assumption of spatially consistent aerosols, ACOLITE provides less noisy products. With the superior performance of ACOLITE in the 490–681 nm wavelength range, and smoother output products, it can be recommended for processing of S3/OLCI data in turbid waters similar to those encountered in the BCZ. The ACOLITE processor for OLCI and the in situ matchup dataset used here are made available under an open source license. Numéro de notice : A2021-476 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.rse.2021.112284 Date de publication en ligne : 12/02/2021 En ligne : https://doi.org/10.1016/j.rse.2021.112284 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97116
in Remote sensing of environment > Vol 256 (April 2020) . - n° 112284[article]PermalinkApports de l'imagerie satellitaire pour caractériser les évolutions morphologiques de l'embouchure du Tage / Anne Jaouen (2019)PermalinkIn situ estimation of water quality parameters in freshwater aquaculture ponds using hyperspectral imaging system / Amr Abd-Elrahman in ISPRS Journal of photogrammetry and remote sensing, vol 66 n° 4 (July - August 2011)PermalinkApplication of spectral decomposition algorithm for mapping water quality in a turbid lake (Lake Kasumigaura, Japan) from Landsat TM data / Y. Oyama in ISPRS Journal of photogrammetry and remote sensing, vol 64 n° 1 (January - February 2009)PermalinkRetrieval of suspended sediment from advanced hyperspectral sensor data in the Scheldt estuary at different stages in the tidal cycle / S. Sterckx in Marine geodesy, vol 30 n° 1-2 (March - June 2007)PermalinkSuspended sediment concentrations in the Yangtze River estuary retrieved from the CMODIS data / Z. Han in International Journal of Remote Sensing IJRS, vol 27 n°18 - 19 - 20 (October 2006)PermalinkMonitoring the maximum turbidity zone and detecting fine-scale turbidity features in the Gironde estuary using high spatial resolution satellite sensor (SPOT HRV, Landsat ETM+) data / D. Doxaran in International Journal of Remote Sensing IJRS, vol 27 n° 11 (June 2006)PermalinkAssessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands / G. Dall'olmo in Remote sensing of environment, vol 96 n° 2 (30/05/2005)PermalinkAVIRIS measurements of chlorophyll, suspended minerals, dissolved organic carbon, and turbidity in the Neuse River, North Carolina / M.A. Karaska in Photogrammetric Engineering & Remote Sensing, PERS, vol 70 n° 1 (January 2004)PermalinkInventaire et suivi des zones humides par télédétection / L. Puente (2004)Permalink