Descripteur
Termes IGN > sciences humaines et sociales > économie > macroéconomie > secteur secondaire > technologies spatiales > observation de la Terre
observation de la TerreVoir aussi |
Documents disponibles dans cette catégorie (63)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Peut-on prédire les séismes ? / Laurent Polidori in Géomètre, n° 2211 (mars 2023)
[article]
Titre : Peut-on prédire les séismes ? Type de document : Article/Communication Auteurs : Laurent Polidori, Auteur Année de publication : 2023 Article en page(s) : pp 21 - 21 Langues : Français (fre) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] catastrophe naturelle
[Termes IGN] déformation de la croute terrestre
[Termes IGN] Demeter (microsatellite)
[Termes IGN] observation de la Terre
[Termes IGN] risque naturel
[Termes IGN] séisme
[Termes IGN] station GNSS
[Termes IGN] tectonique des plaquesRésumé : (Auteur) Le 6 février, un séisme de magnitude 7,8 s’est produit à la frontière entre la Turquie et la Syrie, faisant près de 50000 victimes. Quelques minutes auraient suffi pour épargner presque toutes les vies, aussi s’interroge-t-on à chaque catastrophe : aurait-on pu la prédire ? Numéro de notice : A2023-066 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtSansCL DOI : sans Date de publication en ligne : 01/03/2023 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102713
in Géomètre > n° 2211 (mars 2023) . - pp 21 - 21[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 063-2023031 RAB Revue Centre de documentation En réserve L003 Disponible Pyeo: A Python package for near-real-time forest cover change detection from Earth observation using machine learning / J.F. Roberts in Computers & geosciences, vol 167 (October 2022)
[article]
Titre : Pyeo: A Python package for near-real-time forest cover change detection from Earth observation using machine learning Type de document : Article/Communication Auteurs : J.F. Roberts, Auteur ; R. Mwangi, Auteur ; F. Mukabi, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 105192 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage automatique
[Termes IGN] carte thématique
[Termes IGN] déboisement
[Termes IGN] détection de changement
[Termes IGN] image Sentinel-MSI
[Termes IGN] informatique en nuage
[Termes IGN] Kenya
[Termes IGN] langage de programmation
[Termes IGN] observation de la Terre
[Termes IGN] Python (langage de programmation)
[Termes IGN] surveillance forestièreRésumé : (auteur) Monitoring forest cover change from Earth observation data streams in near-real-time presents a challenge for automated change detection by way of a continuously updated big dataset. Even though deforestation is a significant global problem, forest cover changes in pairs of subsequent images happen relatively infrequently. Detecting a change can require the download and processing of tens, hundreds or even thousands of images. In geoscientific applications of Earth observation, machine learning algorithms are increasingly used. Once trained, a machine learning model can be applied to new images automatically. This paper introduces the open-access Python 3 package Pyeo - “Python for Earth Observation”. Pyeo provides a set of portable, extensible and modular Python functions for the automation of machine learning applications from Earth observation data streams, including automated search and download functionality, pre-processing and atmospheric correction, re-projection, creation of thematic base layers and machine learning classification or regression. Pyeo enables users to train their own machine learning models and then apply the models to newly downloaded imagery over their area of interest. This paper describes in detail how Pyeo works, its requirements, benefits, and a description of the libraries used. An application to the automated forest cover change detection in a region in Kenya is given. Pyeo can be used on cloud computing architectures such as Amazon Web Services, Microsoft Azure and Google Colab to provide scalable applications and processing solutions for the geosciences. Numéro de notice : A2022-706 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.cageo.2022.105192 Date de publication en ligne : 09/07/2022 En ligne : https://doi.org/10.1016/j.cageo.2022.105192 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101575
in Computers & geosciences > vol 167 (October 2022) . - n° 105192[article]Comparing Landsat-8 and Sentinel-2 top of atmosphere and surface reflectance in high latitude regions: case study in Alaska / Jiang Chen in Geocarto international, vol 37 n° 20 ([20/09/2022])
[article]
Titre : Comparing Landsat-8 and Sentinel-2 top of atmosphere and surface reflectance in high latitude regions: case study in Alaska Type de document : Article/Communication Auteurs : Jiang Chen, Auteur ; Weining Zhu, Auteur Année de publication : 2022 Article en page(s) : pp 6052 - 6071 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] Alaska (Etats-Unis)
[Termes IGN] analyse comparative
[Termes IGN] Google Earth Engine
[Termes IGN] image Landsat-8
[Termes IGN] image proche infrarouge
[Termes IGN] image Sentinel-MSI
[Termes IGN] latitude
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] observation de la Terre
[Termes IGN] réflectance de surfaceRésumé : (auteur) Combining Landsat-8 and Sentinel-2 images is an effective approach to obtain high spatiotemporal resolution data for Earth observation and remote sensing modeling. The differences between Landsat-8 and Sentinel-2 products, such as the reflectance at the top of atmosphere (TOA) and land surface, should be compared and evaluated to make sure they are spectrally consistent. Their consistency has been evaluated and the differences have been empirically corrected at mid-low latitudes, but in high latitude areas with a higher solar zenith angle (SZA), the similar work has not been explored. In this study, Landsat-8 and Sentinel-2 TOA and surface reflectance in Alaska as well as some surface parameters, such as the normalized difference vegetation index (NDVI) and normalized difference snow index (NDSI), were compared using the massive data distributed on Google earth engine (GEE) online platform, and their consistency was evaluated and the uncertainty was analyzed. Some empirical models were suggested to convert Sentinel-2 products to be consistent with Landsat-8 products at all bands. The results show that TOA reflectance is more consistent than surface reflectance in Alaska. This study suggests that the consistency between Landsat-8 and Sentinel-2 at high latitudes should be paid more attention because their consistency is lower than that at mid-low latitudes. Numéro de notice : A2022-717 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : https://doi.org/10.1080/10106049.2021.1924295 Date de publication en ligne : 17/05/2021 En ligne : https://doi.org/10.1080/10106049.2021.1924295 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101642
in Geocarto international > vol 37 n° 20 [20/09/2022] . - pp 6052 - 6071[article]A multi-source spatio-temporal data cube for large-scale geospatial analysis / Fan Gao in International journal of geographical information science IJGIS, vol 36 n° 9 (September 2022)
[article]
Titre : A multi-source spatio-temporal data cube for large-scale geospatial analysis Type de document : Article/Communication Auteurs : Fan Gao, Auteur ; Peng Yue, Auteur ; Zhipeng Cao, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1853 - 1884 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] cube espace-temps
[Termes IGN] cyberinfrastructure
[Termes IGN] données spatiotemporelles
[Termes IGN] Géocube
[Termes IGN] hypercube
[Termes IGN] informatique en nuage
[Termes IGN] intelligence artificielle
[Termes IGN] observation de la TerreRésumé : (auteur) Data management and analysis are challenging with big Earth observation (EO) data. Expanding upon the rising promises of data cubes for analysis-ready big EO data, we propose a new geospatial infrastructure layered over a data cube to facilitate big EO data management and analysis. Compared to previous work on data cubes, the proposed infrastructure, GeoCube, extends the capacity of data cubes to multi-source big vector and raster data. GeoCube is developed in terms of three major efforts: formalize cube dimensions for multi-source geospatial data, process geospatial data query along these dimensions, and organize cube data for high-performance geoprocessing. This strategy improves EO data cube management and keeps connections with the business intelligence cube, which provides supplementary information for EO data cube processing. The paper highlights the major efforts and key research contributions to online analytical processing for dimension formalization, distributed cube objects for tiles, and artificial intelligence enabled prediction of computational intensity for data cube processing. Case studies with data from Landsat, Gaofen, and OpenStreetMap demonstrate the capabilities and applicability of the proposed infrastructure. Numéro de notice : A2022-643 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2087222 Date de publication en ligne : 14/06/2022 En ligne : https://doi.org/10.1080/13658816.2022.2087222 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101458
in International journal of geographical information science IJGIS > vol 36 n° 9 (September 2022) . - pp 1853 - 1884[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2022091 SL Revue Centre de documentation Revues en salle Disponible La puissance spatiale chinoise s’affirme / Laurent Polidori in Géomètre, n° 2203 (juin 2022)
[article]
Titre : La puissance spatiale chinoise s’affirme Type de document : Article/Communication Auteurs : Laurent Polidori, Auteur Année de publication : 2022 Article en page(s) : pp 25 - 25 Langues : Français (fre) Descripteur : [Vedettes matières IGN] Technologies spatiales
[Termes IGN] BeiDou
[Termes IGN] débris spatial
[Termes IGN] Gaofen
[Termes IGN] Lune
[Termes IGN] Mars (planète)
[Termes IGN] observation de la Terre
[Termes IGN] programme spatial
[Termes IGN] radar à antenne synthétiqueRésumé : (Auteur) Malgré un démarrage tardif, le programme spatial chinois est désormais présent sur tous les fronts, jusqu’à l’exploration martienne. Numéro de notice : A2022-520 Affiliation des auteurs : non IGN Thématique : IMAGERIE/POSITIONNEMENT Nature : Article nature-HAL : ArtSansCL DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101054
in Géomètre > n° 2203 (juin 2022) . - pp 25 - 25[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 063-2022061 RAB Revue Centre de documentation En réserve L003 Disponible Geoglam, l'agriculture par satellite / Laurent Polidori in Géomètre, n° 2194 (septembre 2021)PermalinkLearning from multimodal and multitemporal earth observation data for building damage mapping / Bruno Adriano in ISPRS Journal of photogrammetry and remote sensing, vol 175 (May 2021)PermalinkPléiades Neo, 4 satellites réactifs / Laurent Polidori in Géomètre, n° 2191 (mai 2021)PermalinkPermalinkReprésentation sémantique de données géospatiales au service de l'analyse de changements / Jordan Dorne (2021)PermalinkPermalinkLa Terre en 4D : apport des séries temporelles de modèles numériques d'élévation par photogrammétrie spatiale pour l'étude de la surface terrestre / César Deschamps-Berger in Revue Française de Photogrammétrie et de Télédétection, n° 221 (novembre 2019)PermalinkPermalinkA spatiotemporal calculus for reasoning about land-use trajectories / Adeline Marinho Maciel in International journal of geographical information science IJGIS, Vol 33 n° 1-2 (January - February 2019)PermalinkUnderstanding of atmospheric systems with efficient numerical methods for observation and prediction / Lei-Ming Ma (2019)Permalink