Descripteur
Documents disponibles dans cette catégorie (4959)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Semantic segmentation of land cover from high resolution multispectral satellite images by spectral-spatial convolutional neural network / Ekrem Saralioglu in Geocarto international, vol 37 n° 2 ([15/01/2022])
[article]
Titre : Semantic segmentation of land cover from high resolution multispectral satellite images by spectral-spatial convolutional neural network Type de document : Article/Communication Auteurs : Ekrem Saralioglu, Auteur ; Oguz Gungor, Auteur Année de publication : 2022 Article en page(s) : pp 657 - 677 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] image Ikonos
[Termes IGN] image multibande
[Termes IGN] image Pléiades-HR
[Termes IGN] image Worldview
[Termes IGN] occupation du sol
[Termes IGN] segmentation sémantique
[Termes IGN] TurquieRésumé : (auteur) Research to improve the accuracy of very high-resolution satellite image classification algorithms is still one of the hot topics in the field of remote sensing. Successful results of deep learning methods in areas such as image classification and object detection have led to the application of these methods to remote sensing problems. Recently, Convolutional Neural Networks (CNNs) are among the most common deep learning methods used in image classification, however, the use of CNN’s in satellite image classification is relatively new. Due to the high computational complexity of 3D CNNs, which aim to extract both spatial and spectral information, 2D CNNs focussing on the extraction of spatial information are often preferred. High-resolution satellite images, however, contain crucial spectral information as well as spatial information. In this study, a 3D-2D CNN model using both spectral and spatial information was applied to extract more accurate land cover information from very high-resolution satellite images. The model was applied on a Worldview-2 satellite image including agricultural product areas such as tea, hazelnut groves and land use classes such as buildings and roads. The results of the CNN based model were also compared against those of the Support Vector Machine (SVM) and Random Forest (RF) algorithms. The post-classification accuracies were obtained using 800 control points generated by a web interface created for crowdsourcing purposes. The classification accuracy was 95.6% for the 3D-2D CNN model, 89.2% for the RF and 86.4% for the SVM. Numéro de notice : A2022-305 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/10106049.2020.1734871 Date de publication en ligne : 04/03/2020 En ligne : https://doi.org/10.1080/10106049.2020.1734871 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100379
in Geocarto international > vol 37 n° 2 [15/01/2022] . - pp 657 - 677[article]Soil erosion estimation of Bhandara region of Maharashtra, India, by integrated use of RUSLE, remote sensing, and GIS / Sumedh R. Kashiwar in Natural Hazards, vol 110 n° 2 (January 2022)
[article]
Titre : Soil erosion estimation of Bhandara region of Maharashtra, India, by integrated use of RUSLE, remote sensing, and GIS Type de document : Article/Communication Auteurs : Sumedh R. Kashiwar, Auteur ; Manik Chandra Kundu, Auteur ; Usha R. Dongarwar, Auteur Année de publication : 2022 Article en page(s) : pp 937 - 959 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] carte d'occupation du sol
[Termes IGN] carte thématique
[Termes IGN] dégradation des sols
[Termes IGN] érosion
[Termes IGN] érosion hydrique
[Termes IGN] image Landsat-8
[Termes IGN] image Sentinel-MSI
[Termes IGN] Inde
[Termes IGN] modèle numérique de surface
[Termes IGN] modèle RUSLE
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] précipitation
[Termes IGN] rive
[Termes IGN] système d'information géographiqueRésumé : (auteur) The agricultural land of the whole world is deteriorating due to the loss of top fertile soil reducing agricultural productivity and groundwater availability. Mainly, natural conditions and human manipulations have made soils extremely prone to soil erosion. Therefore, information on soil erosion status is of paramount importance to the policymakers for land conservation planning in a limited time. Spatial information systems like GIS and RS are known for their efficiencies. With that prospect, the GIS-based RUSLE model is used in this study to assess the soil erosion losses from Bhandara regions of Maharashtra, India. The study area comes under Wainganga sub-river basin, a portion of the Godavari River basin. We have prepared the required five potential parameters (R*K*LS*C*P) of RUSLE model on pixel-to-pixel basis. We have prepared the R factor map from monthly rainfall data of Indian Meteorological Department (IMD) and K factor map by digital the soil series map of NBSS & LUP, Govt. of India. We have used the digital elevation model data (DEM) of Cartosat-1 for LS-factor map, Landsat 8 and Sentinel-2A satellite dataset to generate LULC and NDVI map to obtain C and P factors. The results and satellite data were validated using Google Earth Pro and field observations. The results showed significant soil erosion from the river banks and wastelands near water bodies, with the soil loss values ranging between 20 and 40 t ha−1 yr−1. The land under reserved forest was very slight erosion-prone soil with soil loss of Numéro de notice : A2022-180 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article DOI : 10.1007/s11069-021-04974-5 Date de publication en ligne : 16/08/2021 En ligne : https://doi.org/10.1007/s11069-021-04974-5 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99856
in Natural Hazards > vol 110 n° 2 (January 2022) . - pp 937 - 959[article]Use of remotely sensed data to estimate tree species diversity as an indicator of biodiversity in Blouberg Nature Reserve, South Africa / Mangana Rampheri in Geocarto international, vol 37 n° 2 ([15/01/2022])
[article]
Titre : Use of remotely sensed data to estimate tree species diversity as an indicator of biodiversity in Blouberg Nature Reserve, South Africa Type de document : Article/Communication Auteurs : Mangana Rampheri, Auteur ; Timothy Dube, Auteur ; Inos Dhau, Auteur Année de publication : 2022 Article en page(s) : pp 526 - 542 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Afrique du sud (état)
[Termes IGN] arbre (flore)
[Termes IGN] bande spectrale
[Termes IGN] biodiversité végétale
[Termes IGN] conservation de la flore
[Termes IGN] détection de changement
[Termes IGN] espèce végétale
[Termes IGN] image Landsat-OLI
[Termes IGN] image Landsat-TM
[Termes IGN] indice de végétation
[Termes IGN] régression
[Termes IGN] réserve naturelleRésumé : (auteur) We use remotely sensed data to estimate species diversity in Blouberg Nature Reserve (BNR) in the Limpopo province, South Africa to understand the state of biodiversity since communities’ involvement in conservation initiatives. To achieve this objective, Landsat series data collected before and after community involvement in biodiversity conservation were used in conjunction with selected diversity indices i.e., Shannon-Wiener Index (H’) and Simpson Index (D). Thirty 15 m × 15 m field plots were selected and all trees within each plot were identified, with the help of Botanists. Further, we applied regression analysis to determine the relationship between satellite derived tree species diversity and field observations. The results of the study demonstrated a significant (p Numéro de notice : A2022-052 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/FORET/IMAGERIE Nature : Article DOI : 10.1080/10106049.2020.1723717 Date de publication en ligne : 16/04/2020 En ligne : https://doi.org/10.1080/10106049.2020.1723717 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99443
in Geocarto international > vol 37 n° 2 [15/01/2022] . - pp 526 - 542[article]Variations of urban NO2 pollution during the COVID-19 outbreak and post-epidemic era in China: A synthesis of remote sensing and In situ measurements / Chunhui Zhao in Remote sensing, vol 14 n° 2 (January-2 2022)
[article]
Titre : Variations of urban NO2 pollution during the COVID-19 outbreak and post-epidemic era in China: A synthesis of remote sensing and In situ measurements Type de document : Article/Communication Auteurs : Chunhui Zhao, Auteur ; Chengzin Zhang, Auteur ; Jinan Lin, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 419 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] dioxyde d'azote
[Termes IGN] épidémie
[Termes IGN] image Sentinel-5P-TROPOMI
[Termes IGN] impact sur l'environnement
[Termes IGN] pollution atmosphérique
[Termes IGN] qualité de l'air
[Termes IGN] variation temporelleRésumé : (auteur) Since the COVID-19 outbreak in 2020, China’s air pollution has been significantly affected by control measures on industrial production and human activities. In this study, we analyzed the temporal variations of NO2 concentrations during the COVID-19 lockdown and post-epidemic era in 11 Chinese megacities by using satellite and ground-based remote sensing as well as in situ measurements. The average satellite tropospheric vertical column density (TVCD) of NO2 by TROPOMI decreased by 39.2–71.93% during the 15 days after Chinese New Year when the lockdown was at its most rigorous compared to that of 2019, while the in situ NO2 concentration measured by China National Environmental Monitoring Centre (CNEMC) decreased by 42.53–69.81% for these cities. Such differences between both measurements were further investigated by using ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) remote sensing of NO2 vertical profiles. For instance, in Beijing, MAX-DOAS NO2 showed a decrease of 14.19% (versus 18.63% by in situ) at the ground surface, and 36.24% (versus 36.25% by satellite) for the total tropospheric column. Thus, vertical discrepancies of atmospheric NO2 can largely explain the differences between satellite and in situ NO2 variations. In the post-epidemic era of 2021, satellite NO2 TVCD and in situ NO2 concentrations decreased by 10.42–64.96% and 1.05–34.99% compared to 2019, respectively, possibly related to the reduction of the transportation industry. This study reveals the changes of China’s urban NO2 pollution in the post-epidemic era and indicates that COVID-19 had a profound impact on human social activities and industrial production. Numéro de notice : A2022-102 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs14020419 Date de publication en ligne : 17/01/2022 En ligne : https://doi.org/10.3390/rs14020419 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99567
in Remote sensing > vol 14 n° 2 (January-2 2022) . - n° 419[article]Above-ground biomass estimation in a Mediterranean sparse coppice oak forest using Sentinel-2 data / Fardin Moradi in Annals of forest research, vol 65 n° 1 (January - June 2022)
[article]
Titre : Above-ground biomass estimation in a Mediterranean sparse coppice oak forest using Sentinel-2 data Type de document : Article/Communication Auteurs : Fardin Moradi, Auteur ; Seyed Mohammad Moein Sadeghi, Auteur ; Hadi Beygi Heidarlou, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 165 - 182 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] allométrie
[Termes IGN] biomasse aérienne
[Termes IGN] classification barycentrique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] forêt méditerranéenne
[Termes IGN] image proche infrarouge
[Termes IGN] image Sentinel-MSI
[Termes IGN] indice de végétation
[Termes IGN] Iran
[Termes IGN] Quercus brantii
[Termes IGN] taillisRésumé : (auteur) Implementing a scheduled and reliable estimation of forest characteristics is important for the sustainable management of forests. This study aimed at evaluating the capability of Sentinel-2 satellite data to estimate above-ground biomass (AGB) in coppice forests of Persian oak (Quercus brantii var. persica) located in Western Iran. To estimate the AGB, field data collection was implemented in 80 square plots (40×40 m, area of 1600 m2). Two diameters of the crown were measured and used to calculate the AGB of each tree based on allometric equations. Then, the performance of satellite data in estimating the AGB was evaluated for the area of study using the field-based AGB (dependent variable) as well as the spectral band values, spectrally-derived vegetation indices (independent variables) and four machine learning (ML) algorithms: MultiLayer Perceptron Artificial Neural Network (MLPNN), k-Nearest Neighbor (kNN), Random Forest (RF), and Support Vector Regression (SVR). A five-fold cross-validation was used to verify the effectiveness of models. Examination of the Pearson’s correlation coefficient between AGB and the extracted values showed that IPVI and NDVI vegetation indices had the highest correlation with AGB (r = 0.897). The results indicated that the MLPNN algorithm was the best ML option (RMSE = 1.71 t ha-1; MAE = 1.37 t ha-1; relative RMSE = 24.75%; R2 = 0.87) in estimating the AGB, providing new insights on the capability of remotely sensed-based AGB modeling of sparse Mediterranean forest ecosystems in an area with limited number of field sample plots. Numéro de notice : A2022-876 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.15287/afr.2022.2390 Date de publication en ligne : 29/06/2022 En ligne : https://doi.org/10.15287/afr.2022.2390 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102180
in Annals of forest research > vol 65 n° 1 (January - June 2022) . - pp 165 - 182[article]Airborne LiDAR and high resolution multispectral data integration in Eucalyptus tree species mapping in an Australian farmscape / Niva Kiran Verma in Geocarto international, vol 37 n° 1 ([01/01/2022])PermalinkApplication of deep learning with stratified K-fold for vegetation species discrimation in a protected mountainous region using Sentinel-2 image / Efosa Gbenga Adagbasa in Geocarto international, vol 37 n° 1 ([01/01/2022])PermalinkPermalinkApport de la télédétection et des variables auxiliaires dans l'étude de l'évolution des périodes de sécheresse / Nesrine Farhani (2022)PermalinkCartographie dynamique de la topographie de l'océan de surface par assimilation de données altimétriques / Florian Le Guillou (2022)PermalinkPermalinkDétection des prairies de fauche et estimation des périodes de fauche par télédétection / Emma Seneschal (2022)PermalinkDevelopment of object detectors for satellite images by deep learning / Alissa Kouraeva (2022)PermalinkEstimating aboveground biomass in dense Hyrcanian forests by the use of Sentinel-2 data / Fardin Moradi in Forests, vol 13 n° 1 (January 2022)PermalinkExamining the integration of Landsat operational land imager with Sentinel-1 and vegetation indices in mapping southern yellow pines (Loblolly, Shortleaf, and Virginia pines) / Clement E. Akumu in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 1 (January 2022)Permalink