Descripteur
Termes IGN > imagerie > image spatiale > image satellite > image Landsat > image Landsat-ETM+
image Landsat-ETM+Voir aussi |
Documents disponibles dans cette catégorie (200)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Improvement in crop mapping from satellite image time series by effectively supervising deep neural networks / Sina Mohammadi in ISPRS Journal of photogrammetry and remote sensing, vol 198 (April 2023)
[article]
Titre : Improvement in crop mapping from satellite image time series by effectively supervising deep neural networks Type de document : Article/Communication Auteurs : Sina Mohammadi, Auteur ; Mariana Belgiu, Auteur ; Alfred Stein, Auteur Année de publication : 2023 Article en page(s) : pp 272 - 283 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage dirigé
[Termes IGN] apprentissage profond
[Termes IGN] carte de la végétation
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par réseau neuronal récurrent
[Termes IGN] cultures
[Termes IGN] image Landsat-ETM+
[Termes IGN] image Landsat-OLI
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] série temporelleRésumé : (auteur) Deep learning methods have achieved promising results in crop mapping using satellite image time series. A challenge still remains on how to better learn discriminative feature representations to detect crop types when the model is applied to unseen data. To address this challenge and reveal the importance of proper supervision of deep neural networks in improving performance, we propose to supervise intermediate layers of a designed 3D Fully Convolutional Neural Network (FCN) by employing two middle supervision methods: Cross-entropy loss Middle Supervision (CE-MidS) and a novel middle supervision method, namely Supervised Contrastive loss Middle Supervision (SupCon-MidS). This method pulls together features belonging to the same class in embedding space, while pushing apart features from different classes. We demonstrate that SupCon-MidS enhances feature discrimination and clustering throughout the network, thereby improving the network performance. In addition, we employ two output supervision methods, namely F1 loss and Intersection Over Union (IOU) loss. Our experiments on identifying corn, soybean, and the class Other from Landsat image time series in the U.S. corn belt show that the best set-up of our method, namely IOU+SupCon-MidS, is able to outperform the state-of-the-art methods by
scores of 3.5% and 0.5% on average when testing its accuracy across a different year (local test) and different regions (spatial test), respectively. Further, adding SupCon-MidS to the output supervision methods improves
scores by 1.2% and 7.6% on average in local and spatial tests, respectively. We conclude that proper supervision of deep neural networks plays a significant role in improving crop mapping performance. The code and data are available at: https://github.com/Sina-Mohammadi/CropSupervision.Numéro de notice : A2023-203 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.isprsjprs.2023.03.007 Date de publication en ligne : 29/03/2023 En ligne : https://doi.org/10.1016/j.isprsjprs.2023.03.007 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103105
in ISPRS Journal of photogrammetry and remote sensing > vol 198 (April 2023) . - pp 272 - 283[article]Large-scale burn severity mapping in multispectral imagery using deep semantic segmentation models / Xikun Hu in ISPRS Journal of photogrammetry and remote sensing, vol 196 (February 2023)
[article]
Titre : Large-scale burn severity mapping in multispectral imagery using deep semantic segmentation models Type de document : Article/Communication Auteurs : Xikun Hu, Auteur ; Puzhao Zhang, Auteur ; Yifang Ban, Auteur Année de publication : 2023 Article en page(s) : pp 228 - 240 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] carte thématique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] dommage
[Termes IGN] image Landsat-ETM+
[Termes IGN] image Landsat-OLI
[Termes IGN] image Landsat-TM
[Termes IGN] image multibande
[Termes IGN] image Sentinel-MSI
[Termes IGN] incendie de forêt
[Termes IGN] jeu de données localisées
[Termes IGN] segmentation sémantique
[Termes IGN] surveillance forestière
[Termes IGN] zone sinistréeRésumé : (auteur) Nowadays Earth observation satellites provide forest fire authorities and resource managers with spatial and comprehensive information for fire stabilization and recovery. Burn severity mapping is typically performed by classifying bi-temporal indices (e.g., dNBR, and RdNBR) using thresholds derived from parametric models incorporating field-based measurements. Analysts are currently expending considerable manual effort using prior knowledge and visual inspection to determine burn severity thresholds. In this study, we aim to employ highly automated approaches to provide spatially explicit damage level estimates. We first reorganize a large-scale Landsat-based bi-temporal burn severity assessment dataset (Landsat-BSA) by visual data cleaning based on annotated MTBS data (approximately 1000 major fire events in the United States). Then we apply state-of-the-art deep learning (DL) based methods to map burn severity based on the Landsat-BSA dataset. Experimental results emphasize that multi-class semantic segmentation algorithms can approximate the threshold-based techniques used extensively for burn severity classification. UNet-like models outperform other region-based CNN and Transformer-based models and achieve accurate pixel-wise classification results. Combined with the online hard example mining algorithm to reduce class imbalance issue, Attention UNet achieves the highest mIoU (0.78) and the highest Kappa coefficient close to 0.90. The bi-temporal inputs with ancillary spectral indices work much better than the uni-temporal multispectral inputs. The restructured dataset will be publicly available and create opportunities for further advances in remote sensing and wildfire communities. Numéro de notice : A2023-122 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.12.026 Date de publication en ligne : 11/01/2023 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.12.026 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102498
in ISPRS Journal of photogrammetry and remote sensing > vol 196 (February 2023) . - pp 228 - 240[article]A new strategy for improving the accuracy of forest aboveground biomass estimates in an alpine region based on multi-source remote sensing / Yali Zhang in GIScience and remote sensing, vol 60 n° 1 (2023)
[article]
Titre : A new strategy for improving the accuracy of forest aboveground biomass estimates in an alpine region based on multi-source remote sensing Type de document : Article/Communication Auteurs : Yali Zhang, Auteur ; Ni Wang, Auteur ; Yuliang Wang, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 2163574 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] biomasse aérienne
[Termes IGN] biomasse forestière
[Termes IGN] carte forestière
[Termes IGN] Chine
[Termes IGN] données multisources
[Termes IGN] image Landsat-ETM+
[Termes IGN] image Landsat-OLI
[Termes IGN] image Landsat-TM
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-MSI
[Termes IGN] phénologie
[Termes IGN] puits de carbone
[Termes IGN] santé des forêtsRésumé : (auteur) Spatially explicit information on the distribution of dominant tree species groups and aboveground biomass (AGB) in forested areas is essential for developing targeted forest management and biodiversity conservation measures, as well as assessing forest carbon sequestration capacity. There is a shortage of continuously updated 30-m spatial resolution products for mapping dominant tree species groups. The vast majority of remote sensing-based AGB estimation approaches have relatively low accuracy for dominant tree species groups or forest types and are unsuitable for AGB modeling. Therefore, this study aims to develop an integrated framework that considers the phenological characteristics of different tree species to improve the mapping accuracies of forest dominant tree groups and corresponding AGB estimates. Thirty-meter resolution maps of dominant tree species groups were created using machine learning algorithms and phenological parameters. Features extracted from optical and radar images and phenological characteristics were used to construct AGB estimation models in a temporally consistent manner to improve the AGB estimation accuracy and perform dynamic AGB monitoring. The proposed method accurately characterized the dynamic distribution of the dominant tree species groups in the study area. The traditional AGB model that does not consider different forest types or species had an R2 value of 0.52, whereas the proposed model that considers phenology and forest types had an R2 value of 0.67. This result indicates that incorporating information on phenology and dominant species improves the accuracy of AGB estimations. The AGB in most regions was 30–55 t/ha, showing that the majority of the forests were young or middle-aged stands, and the areal percentage of AGB greater than 30 t/ha increased during the study period, suggesting an improvement in forest quality. Furthermore, the oak AGB was the highest, indicating that oak afforestation should be encouraged to enhance the carbon sequestration capacity of future forest ecosystems. The results provide new insights for researchers and managers to understand the trends of forest development and forest health, as well as technical information and a database for formulating more rational forest management strategies. Numéro de notice : A2023-121 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1080/15481603.2022.2163574 Date de publication en ligne : 03/01/2023 En ligne : https://doi.org/10.1080/15481603.2022.2163574 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102496
in GIScience and remote sensing > vol 60 n° 1 (2023) . - n° 2163574[article]Integration of geospatial technologies with multiple regression model for urban land use land cover change analysis and its impact on land surface temperature in Jimma City, southwestern Ethiopia / Mitiku Badasa Moisa in Applied geomatics, vol 14 n° 4 (December 2022)
[article]
Titre : Integration of geospatial technologies with multiple regression model for urban land use land cover change analysis and its impact on land surface temperature in Jimma City, southwestern Ethiopia Type de document : Article/Communication Auteurs : Mitiku Badasa Moisa, Auteur ; Indale Niguse Dejene, Auteur ; Dessalegn Obsi Gemeda, Auteur Année de publication : 2022 Article en page(s) : pp 653 - 667 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] changement climatique
[Termes IGN] changement d'occupation du sol
[Termes IGN] climat urbain
[Termes IGN] espace vert
[Termes IGN] étalement urbain
[Termes IGN] Ethiopie
[Termes IGN] flore urbaine
[Termes IGN] image Landsat-ETM+
[Termes IGN] image Landsat-OLI
[Termes IGN] image Landsat-TM
[Termes IGN] modèle de régression
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] régression multiple
[Termes IGN] surface imperméable
[Termes IGN] urbanisation
[Termes IGN] utilisation du solRésumé : (auteur) Rapid urbanization and population growth are the main problems faced by developing countries that lead to natural resource depletion in the periphery of the city. This research attempts to analyze the impacts of urban land use land cover (LULC) change on land surface temperature (LST) from 1991 to 2021 in Jimma city, southwestern Ethiopia. Landsat Thematic Mapper (TM) 1991, Landsat Enhanced Thematic Mapper Plus (ETM +) 2005, and Landsat-8 Operational land imagery (OLI)/Thermal Infrared Sensor (TIRS) 2021 were used in this study. Multispectral bands and thermal infrared bands of Landsat images were used to calculate LULC change, normalized difference vegetation index (NDVI), normalized difference built-up index (NDBI), and LST. The LULC of the study area was classified using a supervised classification method with the maximum likelihood algorithm. The results of this study clearly showed that there is a negative correlation between vegetation cover and LST. The decrease in vegetation coverage and expansion of impervious surfaces lead to elevated LST in urban areas. The loss of vegetation cover contributed to the increasing trend of LST. Moreover, the conversion of vegetation cover to impervious surfaces aggravates the problem of LST. The results revealed that the built-up area was increased at a rate of 0.4 km2/year from 1991 to 2021. The vegetation cover in the city declined due to urban expansion to the periphery of the city. Consequently, the dense vegetation and sparse vegetation were converted into built-up areas by approximately 5.2 km2 during the study period. The mean LST of the study area increased by 10.3 °C from 1991 to 2021 during the winter season in daytime. To improve the problems of climate change around urban areas, all stakeholders should work together to increase the urban green space coverage, which will contribute a significant role in mitigating LST and the urban heat island effect. More specifically, all residents could be accessible to public green spaces around big cities. Numéro de notice : A2022-893 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article DOI : 10.1007/s12518-022-00463-x Date de publication en ligne : 22/08/2022 En ligne : https://doi.org/10.1007/s12518-022-00463-x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102241
in Applied geomatics > vol 14 n° 4 (December 2022) . - pp 653 - 667[article]Urban wetland fragmentation and ecosystem service assessment using integrated machine learning algorithm and spatial landscape analysis / Das Subhasis in Geocarto international, vol 37 n° 25 ([01/12/2022])
[article]
Titre : Urban wetland fragmentation and ecosystem service assessment using integrated machine learning algorithm and spatial landscape analysis Type de document : Article/Communication Auteurs : Das Subhasis, Auteur ; Partha Pratim Adhikary, Auteur ; Pravat Kumar Shit, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 7800 - 7818 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie thématique
[Termes IGN] analyse du paysage
[Termes IGN] analyse spatiale
[Termes IGN] apprentissage automatique
[Termes IGN] Calcutta
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] image Landsat-ETM+
[Termes IGN] image Landsat-OLI
[Termes IGN] image Landsat-TM
[Termes IGN] Inde
[Termes IGN] occupation du sol
[Termes IGN] QGIS
[Termes IGN] régression multiple
[Termes IGN] service écosystémique
[Termes IGN] zone humide
[Termes IGN] zone urbaineRésumé : (auteur) Dynamics of ecosystem service value (ESV) of various wetlands has been assessed by researchers globally. But the impact of spatio-temporal variation of landscape metrics on ESV in the lower Gangetic plains has not been examined, fully. The present work has established linkages between landscape metrics and ESV in Kolkata urban agglomeration using support vector machine and multivariate regression analysis. Result indicates that wetland area has been reduced by 5.26%, 13.67% and 9.03% during the periods 1990–2000, 2000–2010 and 2010–2020, respectively and the ESV contributed by wetlands has been decreased by $131428, $323674 and $184649, respectively during the same period at an annual rate of 0.85%. Number of patches, mean patch area and edge density are the main determinants of wetland fragmentation and decreased by 44.12%, 10.23% and 8.65%, respectively during the last three decades. A wetland restoration strategy based on dynamic restoration, reactive restoration and wetland creation for the study area has been formulated, which can guide for sustainable management of wetland resources in Kolkata urban agglomeration. Numéro de notice : A2022-930 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article DOI : 10.1080/10106049.2021.1985174 Date de publication en ligne : 03/11/2021 En ligne : https://doi.org/10.1080/10106049.2021.1985174 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102665
in Geocarto international > vol 37 n° 25 [01/12/2022] . - pp 7800 - 7818[article]Driving factors of urban sprawl in the Romanian plain. Regional and temporal modelling using logistic regression / Ines Grigorescu in Geocarto international, vol 37 n° 24 ([20/10/2022])PermalinkThe fractional vegetation cover (FVC) and associated driving factors of modeling in mining areas / Jun Li in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 10 (October 2022)PermalinkHistorical mapping of rice fields in Japan using phenology and temporally aggregated Landsat images in Google Earth Engine / Luis Carrasco in ISPRS Journal of photogrammetry and remote sensing, vol 191 (September 2022)PermalinkThe interrelationship between LST, NDVI, NDBI, and land cover change in a section of Lagos metropolis, Nigeria / Alfred S. Alademomi in Applied geomatics, vol 14 n° 2 (June 2022)PermalinkApport de la télédétection et des variables auxiliaires dans l'étude de l'évolution des périodes de sécheresse / Nesrine Farhani (2022)PermalinkPermalinkPermalinkSpatiotemporal analysis of urban heat island intensification in the city of Minneapolis-St. Paul and Chicago metropolitan areas using Landsat data from 1984 to 2016 / Mbongowo J. Mbuh in Geocarto international, vol 36 n° 14 ([01/08/2021])PermalinkRapid ecosystem change at the southern limit of the Canadian Arctic, Torngat Mountains National Park / Emma L. Davis in Remote sensing, vol 13 n° 11 (June-1 2021)PermalinkDétection des zones de dégradation et de régénération de la couverture végétale dans le sud du Sénégal à travers l'analyse des tendances de séries temporelles MODIS NDVI et des changements d'occupation des sols à partir d'images LANDSAT / Boubacar Solly in Revue Française de Photogrammétrie et de Télédétection, n° 223 (mars - décembre 2021)Permalink