[n° ou bulletin]
est un bulletin de IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) (1986 -)
[n° ou bulletin]
|
Exemplaires(1)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
065-06011 | RAB | Revue | Centre de documentation | En réserve L003 | Disponible |
Dépouillements
Ajouter le résultat dans votre panierBadly posed classification of remotely sensed images : an experimental comparison of existing data labeling systems / A. Baraldi in IEEE Transactions on geoscience and remote sensing, vol 44 n° 1 (January 2006)
[article]
Titre : Badly posed classification of remotely sensed images : an experimental comparison of existing data labeling systems Type de document : Article/Communication Auteurs : A. Baraldi, Auteur ; Lorenzo Bruzzone, Auteur ; et al., Auteur Année de publication : 2006 Article en page(s) : pp 214 - 235 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] analyse comparative
[Termes IGN] apprentissage automatique
[Termes IGN] classification automatique
[Termes IGN] image satellite
[Termes IGN] réalité de terrainRésumé : (Auteur) Although underestimated in practice, the small/unrepresentative sample problem is likely to affect a large segment of real-world remotely sensed (RS) image mapping applications where ground truth knowledge is typically expensive, tedious, or difficult to gather. Starting from this realistic assumption, subjective (weak) but ample evidence of the relative effectiveness of existing unsupervised and supervised data labeling systems is collected in two RS image classification problems. To provide a fair assessment of competing techniques, first the two selected image datasets feature different degrees of image fragmentation and range from poorly to ill-posed. Second, different initialization strategies are tested to pass on to the mapping system at band the maximally informative representation of prior (ground truth) knowledge. For estimating and comparing the competing systems in terms of learning ability, generalization capability, and computational efficiency when little prior knowledge is available, the recently published data-driven map quality assessment (DAMA) strategy, which is capable of capturing genuine, but small, image details in multiple reference cluster maps, is adopted in combination with a traditional resubstitution method. Collected quantitative results yield conclusions about the potential utility of the alternative techniques that appear to be realistic and useful in practice, in line with theoretical expectations and the qualitative assessment of mapping results by expert photointerpreters. Numéro de notice : A2006-089 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2005.859362 En ligne : https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1564410 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=27816
in IEEE Transactions on geoscience and remote sensing > vol 44 n° 1 (January 2006) . - pp 214 - 235[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-06011 RAB Revue Centre de documentation En réserve L003 Disponible Postflood damage evaluation using landsat TM and ETM+ data integrated with DEM / M. Gianinetto in IEEE Transactions on geoscience and remote sensing, vol 44 n° 1 (January 2006)
[article]
Titre : Postflood damage evaluation using landsat TM and ETM+ data integrated with DEM Type de document : Article/Communication Auteurs : M. Gianinetto, Auteur ; P. Villa, Auteur ; G. Lechi, Auteur Année de publication : 2006 Article en page(s) : pp 236 - 243 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] aide à la décision
[Termes IGN] analyse comparative
[Termes IGN] analyse diachronique
[Termes IGN] analyse en composantes principales
[Termes IGN] dommage matériel
[Termes IGN] image Landsat-ETM+
[Termes IGN] image Landsat-TM
[Termes IGN] impact sur l'environnement
[Termes IGN] inondation
[Termes IGN] Italie
[Termes IGN] modèle numérique de surface
[Termes IGN] risque naturel
[Termes IGN] segmentation d'imageRésumé : (Auteur) In recent decades, radar and optical satellite imagery have been used for evaluating flooding extent. In this paper, a straightforward technique based on the sequential use of the spectral-temporal principal component analysis, logical filtering, and image segmentation integrated with the digital elevation model was developed as a decisional support tool for the allocations of the resource destined for the flooded areas. The mapping technique was first applied to the catastrophic event that occurred in the Piemonte Region (Italy) in November 1994, which was the worst event of the past century for that region, with 44 casualities and over 2000 homeless. Next, it was applied to the Obion/Forked Deer inundation that occurred in Tennessee (U.S.) between November and December 2001, in which heavy damage to the infrastructure was reported. Two Landsat-5 Thematic Mapper (path 194, row 28/29) and two Landsat-7 Enhanced Thematic Mapper Plus (path 23, row 35) images were processed, two of them collected before and two after the events. The method proposed proved to be an effective approach for evaluating flood extent and for assessing the damage produced by the flooding. An overall accuracy of 85.6%, a user accuracy of 87.5 %, and a producer accuracy of 97.5 % were achieved, and an agreement of 83% between ground measures and remotely sensed data in the estimation of flood water volumes was also achieved on a regional scale. Numéro de notice : A2006-090 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2005.859952 En ligne : https://doi.org/10.1109/TGRS.2005.859952 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=27817
in IEEE Transactions on geoscience and remote sensing > vol 44 n° 1 (January 2006) . - pp 236 - 243[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-06011 RAB Revue Centre de documentation En réserve L003 Disponible