Descripteur
Termes IGN > imagerie > image spatiale > image satellite > image Quickbird
image QuickbirdVoir aussi |
Documents disponibles dans cette catégorie (130)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Coral habitat mapping: a comparison between maximum likelihood, Bayesian and Dempster–Shafer classifiers / Mohammad Shawkat Hossain in Geocarto international, vol 36 n° 11 ([15/06/2021])
[article]
Titre : Coral habitat mapping: a comparison between maximum likelihood, Bayesian and Dempster–Shafer classifiers Type de document : Article/Communication Auteurs : Mohammad Shawkat Hossain, Auteur ; Aidy M. Muslim, Auteur ; Muhammad Izuan Nadzri, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1217 - 1235 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] carte thématique
[Termes IGN] classification bayesienne
[Termes IGN] classification de Dempster-Shafer
[Termes IGN] classification par maximum de vraisemblance
[Termes IGN] classification pixellaire
[Termes IGN] fond marin
[Termes IGN] Google Earth
[Termes IGN] habitat d'espèce
[Termes IGN] image Quickbird
[Termes IGN] Malaisie
[Termes IGN] précision infrapixellaire
[Termes IGN] récif corallienRésumé : (auteur) This study deals with the mixed-pixel problem of detecting benthic habitat class membership and evaluates two soft classifiers for coral habitat mapping on Lang Tengah island (Malaysia). A comparison was made between the Bayesian and Dempster–Shafer (D–S) with a traditional maximum likelihood (ML). The heterogeneous pattern of reef environment, established by field observation, four classes of coral habitats containing various combinations of live coral, dead coral with algae, rubble coral and sand. Posterior probability and belief maps, generated by Bayesian and D–S, respectively, were evaluated by visual inspection and final coral habitat distribution maps were validated via accuracy assessment estimates. The accuracy validation tests agreed with the visual inspection of the probability, uncertainty and coral distribution maps. The Bayesian algorithm performed better, with a 34.7–68.5% improvement in accuracy compared to D–S and ML, respectively. Probability maps demonstrate the advantages of the soft classifier over the hard classifier for coral mapping. Numéro de notice : A2021-435 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1637466 Date de publication en ligne : 10/07/2019 En ligne : https://doi.org/10.1080/10106049.2019.1637466 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97803
in Geocarto international > vol 36 n° 11 [15/06/2021] . - pp 1217 - 1235[article]Pan-sharpening via multiscale dynamic convolutional neural network / Jianwen Hu in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 3 (March 2021)
[article]
Titre : Pan-sharpening via multiscale dynamic convolutional neural network Type de document : Article/Communication Auteurs : Jianwen Hu, Auteur ; Pei Hu, Auteur ; Xudong Kang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 2231 - 2244 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données multiéchelles
[Termes IGN] image Geoeye
[Termes IGN] image multibande
[Termes IGN] image panchromatique
[Termes IGN] image Quickbird
[Termes IGN] image Worldview
[Termes IGN] pansharpening (fusion d'images)
[Termes IGN] reconstruction d'imageRésumé : (Auteur) Pan-sharpening is an effective method to obtain high-resolution multispectral images by fusing panchromatic (PAN) images with fine spatial structure and low-resolution multispectral images with rich spectral information. In this article, a multiscale pan-sharpening method based on dynamic convolutional neural network is proposed. The filters in dynamic convolution are generated dynamically and locally by the filter generation network which is different from the standard convolution and strengthens the adaptivity of the network. The dynamic filters are adaptively changed according to the input images. The proposed multiscale dynamic convolutions extract detail feature of PAN image at different scales. Multiscale network structure is beneficial to obtain effective detail features. The weights obtained by the weight generation network are used to adjust the relationship among the detail features in each scale. The GeoEye-1, QuickBird, and WorldView-3 data are used to evaluate the performance of the proposed method. Compared with the widely used state-of-the-art pan-sharpening approaches, the experimental results demonstrate the superiority of the proposed method in terms of both objective quality indexes and visual performance. Numéro de notice : A2021-216 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3007884 Date de publication en ligne : 16/07/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3007884 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97206
in IEEE Transactions on geoscience and remote sensing > Vol 59 n° 3 (March 2021) . - pp 2231 - 2244[article]A review of image fusion techniques for pan-sharpening of high-resolution satellite imagery / Farzaneh Dadrass Javan in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)
[article]
Titre : A review of image fusion techniques for pan-sharpening of high-resolution satellite imagery Type de document : Article/Communication Auteurs : Farzaneh Dadrass Javan, Auteur ; Farhad Samadzadegan, Auteur ; Soroosh Mehravar, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 101 - 117 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] affinage d'image
[Termes IGN] analyse de variance
[Termes IGN] fusion d'images
[Termes IGN] image Kompsat
[Termes IGN] image à haute résolution
[Termes IGN] image Geoeye
[Termes IGN] image Ikonos
[Termes IGN] image multibande
[Termes IGN] image panchromatique
[Termes IGN] image Pléiades-HR
[Termes IGN] image Quickbird
[Termes IGN] image Worldview
[Termes IGN] netteté
[Termes IGN] pansharpening (fusion d'images)
[Termes IGN] pouvoir de résolution spectraleRésumé : (auteur) Pan-sharpening methods are commonly used to synthesize multispectral and panchromatic images. Selecting an appropriate algorithm that maintains the spectral and spatial information content of input images is a challenging task. This review paper investigates a wide range of algorithms, including 41 methods. For this purpose, the methods were categorized as Component Substitution (CS-based), Multi-Resolution Analysis (MRA), Variational Optimization-based (VO), and Hybrid and were tested on a collection of 21 case studies. These include images from WorldView-2, 3 & 4, GeoEye-1, QuickBird, IKONOS, KompSat-2, KompSat-3A, TripleSat, Pleiades-1, Pleiades with the aerial platform, and Deimos-2. Neural network-based methods were excluded due to their substantial computational requirements for operational mapping purposes. The methods were evaluated based on four Spectral and three Spatial quality metrics. An Analysis Of Variance (ANOVA) was used to statistically compare the pan-sharpening categories. Results indicate that MRA-based methods performed better in terms of spectral quality, whereas most Hybrid-based methods had the highest spatial quality and CS-based methods had the lowest results both spectrally and spatially. The revisited version of the Additive Wavelet Luminance Proportional Pan-sharpening method had the highest spectral quality, whereas Generalized IHS with Best Trade-off Parameter with Additive Weights showed the highest spatial quality. CS-based methods generally had the fastest run-time, whereas the majority of methods belonging to MRA and VO categories had relatively long run times. Numéro de notice : A2021-014 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.11.001 Date de publication en ligne : 21/11/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.11.001 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96418
in ISPRS Journal of photogrammetry and remote sensing > vol 171 (January 2021) . - pp 101 - 117[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021011 SL Revue Centre de documentation Revues en salle Disponible 081-2021013 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2021012 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt GIS-based modeling for selection of dam sites in the Kurdistan region, Iraq / Arsalan Ahmed Othman in ISPRS International journal of geo-information, vol 9 n° 4 (April 2020)
[article]
Titre : GIS-based modeling for selection of dam sites in the Kurdistan region, Iraq Type de document : Article/Communication Auteurs : Arsalan Ahmed Othman, Auteur ; Ahmed F. Al-Maamar, Auteur ; Diary Ali Mohammed Amin Al-Manmi, Auteur Année de publication : 2020 Article en page(s) : 34 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] analyse multicritère
[Termes IGN] barrage
[Termes IGN] capacité de stockage
[Termes IGN] construction
[Termes IGN] gestion de l'eau
[Termes IGN] image Landsat-8
[Termes IGN] image Landsat-OLI
[Termes IGN] image Quickbird
[Termes IGN] Iraq
[Termes IGN] jeu de données localisées
[Termes IGN] processus de hiérarchisation analytique floue
[Termes IGN] régression géographiquement pondéréeRésumé : (auteur) Iraq, a country in the Middle East, has suffered severe drought events in the past two decades due to a significant decrease in annual precipitation. Water storage by building dams can mitigate drought impacts and assure water supply. This study was designed to identify suitable sites to build new dams within the Al-Khabur River Basin (KhRB). Both the fuzzy analytic hierarchy process (AHP) and the weighted sum method (WSM) were used and compared to select suitable dam sites. A total of 14 layers were used as input dataset (i.e., lithology, tectonic zones, distance to active faults, distance to lineaments, soil type, land cover, hypsometry, slope gradient, average precipitation, stream width, Curve Number Grid, distance to major roads, distance to towns and cities, and distance to villages). Landsat-8/Operational Land Imager (OLI) and QuickBird optical images were used in the study. Three types of accuracies were tested: overall, suitable pixels by number, and suitable pixels by weight. Based on these criteria, we determined that 11 sites are suitable for locating dams for runoff harvesting. Results were compared to the location of 21 preselected dams proposed by the Ministry of Agricultural and Water Resources (MAWR). Three of these dam sites coincide with those proposed by the MAWR. The overall accuracies of the 11 dams ranged between 76.2% and 91.8%. The two most suitable dam sites are located in the center of the study area, with favorable geology, adequate storage capacity, and in close proximity to the population centers. Of the two selection methods, the AHP method performed better as its overall accuracy is greater than that of the WSM. We argue that when stream discharge data are not available, use of high spatial resolution QuickBird imageries to determine stream width for discharge estimation is acceptable and can be used for preliminary dam site selection. The study offers a valuable and relatively inexpensive tool to decision-makers for eliminating sites having severe limitations (less suitable sites) and focusing on those with the least restriction (more suitable sites) for dam construction. Numéro de notice : A2020-265 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi9040244 Date de publication en ligne : 15/04/2020 En ligne : https://doi.org/10.3390/ijgi9040244 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95028
in ISPRS International journal of geo-information > vol 9 n° 4 (April 2020) . - 34 p.[article]Spectral–spatial–temporal MAP-based sub-pixel mapping for land-cover change detection / Da He in IEEE Transactions on geoscience and remote sensing, vol 58 n° 3 (March 2020)
[article]
Titre : Spectral–spatial–temporal MAP-based sub-pixel mapping for land-cover change detection Type de document : Article/Communication Auteurs : Da He, Auteur ; Yanfei Zhong, Auteur ; Liangpei Zhang, Auteur Année de publication : 2020 Article en page(s) : pp 1696 - 1717 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] changement d'occupation du sol
[Termes IGN] classification du maximum a posteriori
[Termes IGN] détection de changement
[Termes IGN] distribution spatiale
[Termes IGN] données spatiotemporelles
[Termes IGN] image Aqua-MODIS
[Termes IGN] image Landsat-8
[Termes IGN] image Landsat-TM
[Termes IGN] image multibande
[Termes IGN] image Quickbird
[Termes IGN] image Terra-MODIS
[Termes IGN] modèle dynamique
[Termes IGN] optimisation spatiale
[Termes IGN] précision infrapixellaire
[Termes IGN] série temporelle
[Termes IGN] urbanisation
[Termes IGN] Wuhan (Chine)
[Termes IGN] zone urbaineRésumé : (Auteur) The maximum a posteriori (MAP) estimation model-based sub-pixel mapping (SPM) method is an alternative way to solve the ill-posed SPM problem. The MAP estimation model has been proven to be an effective SPM approach and has been extensively developed over the past few years, as a result of its effective regularization capability that comes from the spatial regularization model. However, various spatial regularization models do not always truly reflect the detailed spatial distribution in a real situation, and the over-smoothing effect of the spatial regularization model always tends to efface the detailed structural information. In this article, under the scenario of time-series observation by remote sensing imagery, the joint spectral–spatial–temporal MAP-based (SST_MAP) model for SPM is proposed. In SST_MAP, a newly developed temporal regularization model is added to the MAP model, based on the prerequisite for a temporally close fine image covering the same study region. This available fine image can provide the specific spatial structures most closely conforming to the ground truth for a more precise constraint, thereby reducing the over-smoothing effect. Furthermore, the three dimensions are mutually balanced and mutually constrained, to reach an equilibrium point and achieve restoration of both smooth areas for the homogeneous land-cover classes and a detailed structure for the heterogeneous land-cover classes. Four experiments were designed to validate the proposed SST_MAP: three synthetic-image experiments and one real-image experiment. The restoration results confirm the superiority of the proposed SST_MAP model. Notably, under the background of time-series observation, SST_MAP provides an alternative way of land-cover change detection (LCCD), achieving both detailed spatial-scale and high-frequency temporal LCCD observation for the study case of urbanization analysis within the city of Wuhan in China. Numéro de notice : A2020-088 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2947708 Date de publication en ligne : 18/12/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2947708 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94662
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 3 (March 2020) . - pp 1696 - 1717[article]A two-scale approach for estimating forest aboveground biomass with optical remote sensing images in a subtropical forest of Nepal / Upama A. Koju in Journal of Forestry Research, vol 30 n° 6 (December 2019)PermalinkPermalinkChange detection based on stacked generalization system with segmentation constraint / Kun Tan in Photogrammetric Engineering & Remote Sensing, PERS, vol 84 n° 11 (November 2018)PermalinkPan-sharpening via deep metric learning / Yinghui Xing in ISPRS Journal of photogrammetry and remote sensing, vol 145 - part A (November 2018)PermalinkAn effective ensemble classification framework using random forests and a correlation based feature selection technique / Dibyajyoti Chutia in Transactions in GIS, vol 21 n° 6 (December 2017)PermalinkUnsupervised-restricted deconvolutional neural network for very high resolution remote-sensing image classification / Yiting Tao in IEEE Transactions on geoscience and remote sensing, vol 55 n° 12 (December 2017)PermalinkEvaluation of pan-sharpening methods for spatial and spectral quality / Jagalingam Pushparaj in Applied geomatics, vol 9 n° 1 (March 2017)PermalinkUtilisation d’image THR et drone pour l’étude de la dynamique côtière d’Ouvéa (Île des Loyautés - Nouvelle Calédonie) / Sabrina Bosque (2017)PermalinkUrban slum detection using texture and spatial metrics derived from satellite imagery / Divyani Kohli in Journal of spatial science, vol 61 n° 2 (December 2016)PermalinkEarth observation-based multi-scale impact assessment of internally displaced person (IDP) camps on wood resources in Zalingei, Darfur / Kristin Spröhnle in Geocarto international, vol 31 n° 5 - 6 (May - June 2016)Permalink