Descripteur
Documents disponibles dans cette catégorie (959)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Étude des outils permettant la classification d’un nuage de points LiDAR aérien et optimisation de la chaîne de traitement dans le cadre du programme national du LiDAR HD in XYZ, n° 179 (juin 2024)
[article]
Titre : Étude des outils permettant la classification d’un nuage de points LiDAR aérien et optimisation de la chaîne de traitement dans le cadre du programme national du LiDAR HD Type de document : Article/Communication Année de publication : 2024 Article en page(s) : pp. 35 - 42 Langues : Français (fre) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] classification
[Termes IGN] image aérienne
[Termes IGN] intelligence artificielle
[Termes IGN] Lidar
[Termes IGN] semis de pointsRésumé : Ce travail présente une étude portant sur la classification de nuages de points issus d’une acquisition aérienne, en se concentrant sur les données acquises dans le cadre du projet national LiDAR HD. Il réalise une analyse critique des outils proposés par Terrascan et des méthodes pa- ramétriques qui offrent un bon rapport temps/qualité, mais il subsiste des confusions qui demandent un temps de correction conséquent. De plus, les outils Terrascan sont limités à la classification du sol, des bâtiments et d’une partie de la végétation. Il n’est pas proposé de méthodes efficaces pour classifier des éléments de la classe du sursol pérenne, comme les pylônes électriques ou les éoliennes notamment. Pour y remédier, une autre méthode innovante, basée sur les descripteurs 3D est proposée. Cette méthode offre une meilleure détection des bâtiments et permet, en outre, de classifier des éléments du sursol pérenne. Enfin, il est étudié les synergies entre les différents outils testés. Puis les performances d’une IA sont introduites afin de discuter de l’avenir de la classification des nuages de points aériens. Numéro de notice : A2024-1792 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtSansCL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103658
in XYZ > n° 179 (juin 2024) . - pp. 35 - 42[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 112-2024021 RAB Revue Centre de documentation En réserve L003 Exclu du prêt Accuracy analysis of UAV photogrammetry using RGB and multispectral sensors / Nikola Santrač in Geodetski vestnik, vol 67 n° 4 (December 2023)
[article]
Titre : Accuracy analysis of UAV photogrammetry using RGB and multispectral sensors Type de document : Article/Communication Auteurs : Nikola Santrač, Auteur ; Pavel Benka, Auteur ; Mehmed Batilović, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 459 - 472 Note générale : bibliographie Langues : Anglais (eng) Slovène (slv) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] image captée par drone
[Termes IGN] image multibande
[Termes IGN] image RVB
[Termes IGN] modèle géométrique de prise de vue
[Termes IGN] point d'appui
[Termes IGN] positionnement cinématique en temps réel
[Termes IGN] qualité des donnéesRésumé : (auteur) In recent years, unmanned aerial vehicles (UAVs) have become increasingly important as a tool for quickly collecting high-resolution (spatial and spectral) imagery of the Earth's surface. The final products are highly dependent on the choice of values for various parameters in flight planning, the type of sensors, and the processing of the data. In this paper ground control points (GCPs) were first measured using the Global Navigation Satellite System (GNSS) Real-Time Kinematic (RTK) method, and then due to the low height accuracy of the GNSS RTK method all points were measured using a detailed leveling method. This study aims to provide a basic assessment of quality, including four main aspects: (1) the difference between an RGB sensor and a five-band multispectral sensor on accuracy and the amount of data, (2) the impact of the number of GCPs on the accuracy of the final products, (3) the impact of different altitudes and cross flight strips, and (4) the accuracy analysis of multi-altitude models. The results suggest that the type of sensor, flight configuration, and GCP setup strongly affect the quality and quantity of the final product data while creating a multi-altitude model does not result in the expected quality of data. With its unique combination of sensors and parameters, the results and recommendations presented in this paper can assist professionals and researchers in their future work. Numéro de notice : A2023-241 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.15292/geodetski-vestnik.2023.04.459-472 Date de publication en ligne : 01/12/2023 En ligne : https://dx.doi.org/10.15292/geodetski-vestnik.2023.04.459-472 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103604
in Geodetski vestnik > vol 67 n° 4 (December 2023) . - pp 459 - 472[article]Combination of Terrestrial Laser Scanning and Unmanned Aerial Vehicle Photogrammetry for Heritage Building Information Modeling: A Case Study of Tarsus St. Paul Church / Şafak Fidan in Photogrammetric Engineering & Remote Sensing, PERS, vol 89 n° 12 (December 2023)
[article]
Titre : Combination of Terrestrial Laser Scanning and Unmanned Aerial Vehicle Photogrammetry for Heritage Building Information Modeling: A Case Study of Tarsus St. Paul Church Type de document : Article/Communication Auteurs : Şafak Fidan, Auteur ; Ulvi Ali, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 753 - 760 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] données lidar
[Termes IGN] église
[Termes IGN] image captée par drone
[Termes IGN] modèle numérique
[Termes IGN] patrimoine archéologique
[Termes IGN] patrimoine immobilierRésumé : (auteur) Cultural heritage building information modeling (HBIM) is an emerging process allowing us to reconstruct built heritage virtually. The data of a digitally documented cultural heritage building offers significant advantages as it is accessible and modifiable by all professionals involved in the same or different projects. The most important factor affecting the accuracy and precision of the HBIM model is the ability to collect complete and accurate information about the physical structure. Combining terrestrial laser scanning (TLS) and unmanned aerial vehicle (UAV) photogrammetry point clouds is one of the most efficient ways to capture accurate digital data on the building. This study provides the foundation for creating an HBIM model for cultural heritage the coupling of spatial data with TLS and UAV. This paper aims to generate synergy between TLS and UAV point cloud data and ensure that the spatial database contains sufficient data to model historical objects with HBIM tendencies. Numéro de notice : A2023-238 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.23-00031R2 En ligne : https://doi.org/10.14358/PERS.23-00031R2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103599
in Photogrammetric Engineering & Remote Sensing, PERS > vol 89 n° 12 (December 2023) . - pp 753 - 760[article]Automated extraction and validation of Stone Pine (Pinus pinea L.) trees from UAV-based digital surface models / Asli Ozdarici-Ok in Geo-spatial Information Science, vol 26 n° inconnu ([01/08/2023])
[article]
Titre : Automated extraction and validation of Stone Pine (Pinus pinea L.) trees from UAV-based digital surface models Type de document : Article/Communication Auteurs : Asli Ozdarici-Ok, Auteur ; Ali Ozgun Ok, Auteur ; et al., Auteur Année de publication : 2023 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] image captée par drone
[Termes IGN] modèle numérique de surface
[Termes IGN] Pinus pinea
[Termes IGN] semis de points
[Termes IGN] TurquieRésumé : (auteur) Stone Pine (Pinus pinea L.) is currently the pine species with the highest commercial value with edible seeds. In this respect, this study introduces a new methodology for extracting Stone Pine trees from Digital Surface Models (DSMs) generated through an Unmanned Aerial Vehicle (UAV) mission. We developed a novel enhanced probability map of local maxima that facilitates the computation of the orientation symmetry by means of new probabilistic local minima information. Four test sites are used to evaluate our automated framework within one of the most important Stone Pine forest areas in Antalya, Turkey. A Hand-held Mobile Laser Scanner (HMLS) was utilized to collect the reference point cloud dataset. Our findings confirm that the proposed methodology, which uses a single DSM as an input, secures overall pixel-based and object-based F1-scores of 88.3% and 97.7%, respectively. The overall median Euclidean distance revealed between the automatically extracted stem locations and the manually extracted ones is computed to be 36 cm (less than 4 pixels), demonstrating the effectiveness and robustness of the proposed methodology. Finally, the comparison with the state-of-the-art reveals that the outcomes of the proposed methodology outperform the results of six previous studies in this context. Numéro de notice : A2022-620 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10095020.2022.2090864 Date de publication en ligne : 21/07/2022 En ligne : https://doi.org/10.1080/10095020.2022.2090864 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101364
in Geo-spatial Information Science > vol 26 n° inconnu [01/08/2023][article]Mapping the walk: A scalable computer vision approach for generating sidewalk network datasets from aerial imagery / Maryam Hosseini in Computers, Environment and Urban Systems, vol 101 (April 2023)
[article]
Titre : Mapping the walk: A scalable computer vision approach for generating sidewalk network datasets from aerial imagery Type de document : Article/Communication Auteurs : Maryam Hosseini, Auteur ; Andres Sevtsuk, Auteur ; Fabio Miranda, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 101950 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] détection d'objet
[Termes IGN] Etats-Unis
[Termes IGN] image aérienne
[Termes IGN] navigation pédestre
[Termes IGN] segmentation sémantique
[Termes IGN] système d'information géographique
[Termes IGN] trottoir
[Termes IGN] vision par ordinateurRésumé : (auteur) While cities around the world are increasingly promoting streets and public spaces that prioritize pedestrians over vehicles, significant data gaps have made pedestrian mapping, analysis, and modeling challenging to carry out. Most cities, even in industrialized economies, still lack information about the location and connectivity of their sidewalks, making it difficult to implement research on pedestrian infrastructure and holding the technology industry back from developing accurate, location-based Apps for pedestrians, wheelchair users, street vendors, and other sidewalk users. To address this gap, we have designed and implemented an end-to-end open-source tool— Tile2Net —for extracting sidewalk, crosswalk, and footpath polygons from orthorectified aerial imagery using semantic segmentation. The segmentation model, trained on aerial imagery from Cambridge, MA, Washington DC, and New York City, offers the first open-source scene classification model for pedestrian infrastructure from sub-meter resolution aerial tiles, which can be used to generate planimetric sidewalk data in North American cities. Tile2Net also generates pedestrian networks from the resulting polygons, which can be used to prepare datasets for pedestrian routing applications. The work offers a low-cost and scalable data collection methodology for systematically generating sidewalk network datasets, where orthorectified aerial imagery is available, contributing to over-due efforts to equalize data opportunities for pedestrians, particularly in cities that lack the resources necessary to collect such data using more conventional methods. Numéro de notice : A2023-187 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.compenvurbsys.2023.101950 Date de publication en ligne : 22/02/2023 En ligne : https://doi.org/10.1016/j.compenvurbsys.2023.101950 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102961
in Computers, Environment and Urban Systems > vol 101 (April 2023) . - n° 101950[article]Automatic detection of thin oil films on water surfaces in ultraviolet imagery / Ming Xie in Photogrammetric record, vol 38 n° 181 (March 2023)PermalinkMulti-sensor airborne lidar requires intercalibration for consistent estimation of light attenuation and plant area density / Grégoire Vincent in Remote sensing of environment, vol 286 (March 2023)PermalinkValidation of Island 3D-mapping based on UAV spatial point cloud optimization: a case study in Dongluo Island of China / Jian Wu in Photogrammetric Engineering & Remote Sensing, PERS, vol 89 n° 3 (March 2023)PermalinkComparative analysis of different CNN models for building segmentation from satellite and UAV images / Batuhan Sariturk in Photogrammetric Engineering & Remote Sensing, PERS, vol 89 n° 2 (February 2023)PermalinkDetection of growth change of young forest based on UAV RGB images at single-tree level / Xiaocheng Zhou in Forests, vol 14 n° 1 (January 2023)PermalinkGeospatial-based machine learning techniques for land use and land cover mapping using a high-resolution unmanned aerial vehicle image / Taposh Mollick in Remote Sensing Applications: Society and Environment, RSASE, vol 29 (January 2023)PermalinkA hierarchical deformable deep neural network and an aerial image benchmark dataset for surface multiview stereo reconstruction / Jiayi Li in IEEE Transactions on geoscience and remote sensing, vol 61 n° 1 (January 2023)PermalinkHow to optimize the 2D/3D urban thermal environment: Insights derived from UAV LiDAR/multispectral data and multi-source remote sensing data / Rongfang Lyu in Sustainable Cities and Society, vol 88 (January 2023)PermalinkPSMNet-FusionX3 : LiDAR-guided deep learning stereo dense matching on aerial images / Teng Wu (2023)PermalinkDes relevés sur mesure pour la sentinelle des Pyrénées / Marielle Mayo in Géomètre, n° 2209 (janvier 2023)Permalink