Descripteur
Documents disponibles dans cette catégorie (35)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Deep learning feature representation for image matching under large viewpoint and viewing direction change / Lin Chen in ISPRS Journal of photogrammetry and remote sensing, vol 190 (August 2022)
[article]
Titre : Deep learning feature representation for image matching under large viewpoint and viewing direction change Type de document : Article/Communication Auteurs : Lin Chen, Auteur ; Christian Heipke, Auteur Année de publication : 2022 Article en page(s) : pp 94 -112 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement d'images
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image aérienne oblique
[Termes IGN] orientation d'image
[Termes IGN] reconnaissance de formes
[Termes IGN] réseau neuronal siamois
[Termes IGN] SIFT (algorithme)Résumé : (auteur) Feature based image matching has been a research focus in photogrammetry and computer vision for decades, as it is the basis for many applications where multi-view geometry is needed. A typical feature based image matching algorithm contains five steps: feature detection, affine shape estimation, orientation assignment, description and descriptor matching. This paper contains innovative work in different steps of feature matching based on convolutional neural networks (CNN). For the affine shape estimation and orientation assignment, the main contribution of this paper is twofold. First, we define a canonical shape and orientation for each feature. As a consequence, instead of the usual Siamese CNN, only single branch CNNs needs to be employed to learn the affine shape and orientation parameters, which turns the related tasks from supervised to self supervised learning problems, removing the need for known matching relationships between features. Second, the affine shape and orientation are solved simultaneously. To the best of our knowledge, this is the first time these two modules are reported to have been successfully trained together. In addition, for the descriptor learning part, a new weak match finder is suggested to better explore the intra-variance of the appearance of matched features. For any input feature patch, a transformed patch that lies far from the input feature patch in descriptor space is defined as a weak match feature. A weak match finder network is proposed to actively find these weak match features; they are subsequently used in the standard descriptor learning framework. The proposed modules are integrated into an inference pipeline to form the proposed feature matching algorithm. The algorithm is evaluated on standard benchmarks and is used to solve for the parameters of image orientation of aerial oblique images. It is shown that deep learning feature based image matching leads to more registered images, more reconstructed 3D points and a more stable block geometry than conventional methods. The code is available at https://github.com/Childhoo/Chen_Matcher.git. Numéro de notice : A2022-502 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.06.003 Date de publication en ligne : 14/06/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.06.003 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101000
in ISPRS Journal of photogrammetry and remote sensing > vol 190 (August 2022) . - pp 94 -112[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2022081 SL Revue Centre de documentation Revues en salle Disponible 081-2022083 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2022082 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt 3D modeling of urban area based on oblique UAS images - An end-to-end pipeline / Valeria-Ersilia Oniga in Remote sensing, vol 14 n° 2 (January-2 2022)
[article]
Titre : 3D modeling of urban area based on oblique UAS images - An end-to-end pipeline Type de document : Article/Communication Auteurs : Valeria-Ersilia Oniga, Auteur ; Ana-Ioana Breaban, Auteur ; Norbert Pfeifer, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 422 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] apprentissage automatique
[Termes IGN] Bâti-3D
[Termes IGN] CityGML
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données lidar
[Termes IGN] image aérienne oblique
[Termes IGN] image captée par drone
[Termes IGN] indice de végétation
[Termes IGN] lasergrammétrie
[Termes IGN] modèle numérique de surface
[Termes IGN] modélisation 3D
[Termes IGN] point d'appui
[Termes IGN] Roumanie
[Termes IGN] segmentation
[Termes IGN] semis de points
[Termes IGN] zone urbaineRésumé : (auteur) 3D modelling of urban areas is an attractive and active research topic, as 3D digital models of cities are becoming increasingly common for urban management as a consequence of the constantly growing number of people living in cities. Viewed as a digital representation of the Earth’s surface, an urban area modeled in 3D includes objects such as buildings, trees, vegetation and other anthropogenic structures, highlighting the buildings as the most prominent category. A city’s 3D model can be created based on different data sources, especially LiDAR or photogrammetric point clouds. This paper’s aim is to provide an end-to-end pipeline for 3D building modeling based on oblique UAS images only, the result being a parametrized 3D model with the Open Geospatial Consortium (OGC) CityGML standard, Level of Detail 2 (LOD2). For this purpose, a flight over an urban area of about 20.6 ha has been taken with a low-cost UAS, i.e., a DJI Phantom 4 Pro Professional (P4P), at 100 m height. The resulting UAS point cloud with the best scenario, i.e., 45 Ground Control Points (GCP), has been processed as follows: filtering to extract the ground points using two algorithms, CSF and terrain-mark; classification, using two methods, based on attributes only and a random forest machine learning algorithm; segmentation using local homogeneity implemented into Opals software; plane creation based on a region-growing algorithm; and plane editing and 3D model reconstruction based on piece-wise intersection of planar faces. The classification performed with ~35% training data and 31 attributes showed that the Visible-band difference vegetation index (VDVI) is a key attribute and 77% of the data was classified using only five attributes. The global accuracy for each modeled building through the workflow proposed in this study was around 0.15 m, so it can be concluded that the proposed pipeline is reliable. Numéro de notice : A2022-101 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article DOI : 10.3390/rs14020422 Date de publication en ligne : 17/01/2022 En ligne : https://doi.org/10.3390/rs14020422 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99566
in Remote sensing > vol 14 n° 2 (January-2 2022) . - n° 422[article]Structure-aware completion of photogrammetric meshes in urban road environment / Qing Zhu in ISPRS Journal of photogrammetry and remote sensing, vol 175 (May 2021)
[article]
Titre : Structure-aware completion of photogrammetric meshes in urban road environment Type de document : Article/Communication Auteurs : Qing Zhu, Auteur ; Qisen Shang, Auteur ; Han Hu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 56 - 70 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection d'objet
[Termes IGN] détection de partie cachée
[Termes IGN] espace urbain
[Termes IGN] image aérienne oblique
[Termes IGN] maillage
[Termes IGN] modélisation 3D
[Termes IGN] reconstruction de route
[Termes IGN] réseau routier
[Termes IGN] texture d'image
[Termes IGN] véhicule automobileRésumé : (auteur) Photogrammetric mesh models obtained from aerial oblique images have been widely used for urban reconstruction. However, photogrammetric meshes suffer from severe texture problems, particularly in typical road areas, owing to occlusion. This paper proposes a structure-aware completion approach to improve mesh quality by seamlessly removing undesired vehicles. Specifically, a discontinuous texture atlas is first integrated into a continuous screen space by rendering trough a graphics pipeline. The rendering also records the necessary mapping for deintegration to the original texture atlas after editing. Vehicle regions are masked by a standard object detection approach, namely, Faster RCNN. Subsequently, the masked regions are completed, guided by the linear structures and regularities in the road region; this is implemented based on PatchMatch. Finally, the completed rendered image is deintegrated to the original texture atlas, and the triangles for the vehicles are also flattened so that improved meshes can be obtained. Experimental evaluation and analysis are conducted on three datasets, which were captured with different sensors and ground sample distances. The results demonstrate that the proposed method can produce quite realistic meshes after removing the vehicles. The structure-aware completion approach for road regions outperforms popular image completion methods, and an ablation study further confirms the effectiveness of the linear guidance. It should be noted that the proposed method can also handle tiled mesh models for large-scale scenes. Code and datasets are available at the project website. Numéro de notice : A2021-263 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.02.010 Date de publication en ligne : 11/03/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.02.010 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97312
in ISPRS Journal of photogrammetry and remote sensing > vol 175 (May 2021) . - pp 56 - 70[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021051 SL Revue Centre de documentation Revues en salle Disponible 081-2021052 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt 081-2021053 DEP-RECP Revue Saint-Mandé Dépôt en unité Exclu du prêt Automated registration of SfM‐MVS multitemporal datasets using terrestrial and oblique aerial images / Luigi Parente in Photogrammetric record, vol 36 n° 173 (March 2021)
[article]
Titre : Automated registration of SfM‐MVS multitemporal datasets using terrestrial and oblique aerial images Type de document : Article/Communication Auteurs : Luigi Parente, Auteur ; Jim H. Chandler, Auteur ; Neil Dixon, Auteur Année de publication : 2021 Article en page(s) : pp 12 - 35 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] algorithme ICP
[Termes IGN] alignement
[Termes IGN] Angleterre
[Termes IGN] détection de changement
[Termes IGN] données multisources
[Termes IGN] données multitemporelles
[Termes IGN] géoréférencement direct
[Termes IGN] image aérienne oblique
[Termes IGN] image captée par drone
[Termes IGN] image oblique
[Termes IGN] image terrestre
[Termes IGN] modèle stéréoscopique
[Termes IGN] modélisation 3D
[Termes IGN] point d'appui
[Termes IGN] semis de points
[Termes IGN] SIFT (algorithme)
[Termes IGN] structure-from-motionRésumé : (auteur) Accurate alignment of 3D models is critical for valid change‐detection analysis from multitemporal photogrammetric datasets. This paper assesses an automated registration strategy which uses the scale‐invariant feature transform (SIFT) algorithm implemented in modern photogrammetric software. This registration solution, also known as “Time‐SIFT”, was tested at two study sites featuring vertical surfaces, including a sea cliff (~500 m2) and a quarry face (~50 000 m2). Tests demonstrated that the investigated registration strategy can achieve accurate alignments between multitemporal point clouds even when using multisource and multi‐perspective data, captured across widely varying spatial and temporal scales and under a range of weather and illumination conditions. The combination of the Time‐SIFT approach with an ICP algorithm produced moderate improvements in the alignment. Furthermore, the use of an innovative direct georeferencing technique, which used the tracking feature of a robotic total station, allowed for accurate georectification of 3D models. Numéro de notice : A2021-280 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1111/phor.12346 Date de publication en ligne : 06/01/2021 En ligne : https://doi.org/10.1111/phor.12346 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97377
in Photogrammetric record > vol 36 n° 173 (March 2021) . - pp 12 - 35[article]Feature detection and description for image matching: from hand-crafted design to deep learning / Lin Chen in Geo-spatial Information Science, vol 24 n° 1 (March 2021)
[article]
Titre : Feature detection and description for image matching: from hand-crafted design to deep learning Type de document : Article/Communication Auteurs : Lin Chen, Auteur ; Franz Rottensteiner, Auteur ; Christian Heipke, Auteur Année de publication : 2021 Article en page(s) : pp 58 - 74 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement automatique
[Termes IGN] appariement d'images
[Termes IGN] appariement de formes
[Termes IGN] apprentissage automatique
[Termes IGN] apprentissage profond
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image aérienne oblique
[Termes IGN] orientation d'image
[Termes IGN] SIFT (algorithme)Résumé : (Auteur) In feature based image matching, distinctive features in images are detected and represented by feature descriptors. Matching is then carried out by assessing the similarity of the descriptors of potentially conjugate points. In this paper, we first shortly discuss the general framework. Then, we review feature detection as well as the determination of affine shape and orientation of local features, before analyzing feature description in more detail. In the feature description review, the general framework of local feature description is presented first. Then, the review discusses the evolution from hand-crafted feature descriptors, e.g. SIFT (Scale Invariant Feature Transform), to machine learning and deep learning based descriptors. The machine learning models, the training loss and the respective training data of learning-based algorithms are looked at in more detail; subsequently the various advantages and challenges of the different approaches are discussed. Finally, we present and assess some current research directions before concluding the paper. Numéro de notice : A2021-297 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10095020.2020.1843376 Date de publication en ligne : 17/11/2020 En ligne : https://doi.org/10.1080/10095020.2020.1843376 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97379
in Geo-spatial Information Science > vol 24 n° 1 (March 2021) . - pp 58 - 74[article]PermalinkEnjeux et méthodes d’un liage de référentiels géographiques : l’exemple du projet de recherche ALEGORIA / Clara Lelièvre (2021)PermalinkOptimisation des protocoles de numérisation 3D multi-capteurs et de fusion de données hétérogènes au sein de l'entreprise Premier plan / Elisa Gautron (2021)PermalinkUnifying remote sensing image retrieval and classification with robust fine-tuning / Dimitri Gominski (2021)PermalinkEfficient match pair selection for oblique UAV images based on adaptive vocabulary tree / San Jiang in ISPRS Journal of photogrammetry and remote sensing, vol 161 (March 2020)PermalinkCo‐registration of panoramic mobile mapping images and oblique aerial images / Phillipp Jende in Photogrammetric record, vol 34 n° 166 (June 2019)PermalinkSemantic façade segmentation from airborne oblique images / Yaping Lin in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 6 (June 2019)PermalinkSimulation and analysis of photogrammetric UAV image blocks: influence of camera calibration error / Yilin Zhou in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol IV-2/W5 (May 2019)Permalink100% automatic metrology with UAV photogrammetry and embedded GPS, and its application in dike monitoring / Yilin Zhou (2019)PermalinkPermalink