Descripteur
Termes IGN > imagerie > image numérique > image en couleur
image en couleurSynonyme(s)Image à plusieurs canauxVoir aussi |
Documents disponibles dans cette catégorie (44)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Effective CBIR based on hybrid image features and multilevel approach / D. Latha in Multimedia tools and applications, vol 81 n° 20 (August 2022)
[article]
Titre : Effective CBIR based on hybrid image features and multilevel approach Type de document : Article/Communication Auteurs : D. Latha, Auteur ; A. Geetha, Auteur Année de publication : 2022 Article en page(s) : pp Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] base de données d'images
[Termes IGN] écart type
[Termes IGN] espace colorimétrique
[Termes IGN] image en couleur
[Termes IGN] image RVB
[Termes IGN] matrice de co-occurrence
[Termes IGN] motif binaire local
[Termes IGN] niveau de gris (image)
[Termes IGN] observation multiniveaux
[Termes IGN] recherche d'image basée sur le contenu
[Termes IGN] saturation de la couleur
[Termes IGN] texture d'image
[Termes IGN] transformation intensité-teinte-saturationRésumé : (auteur) Content based image retrieval (CBIR) process can retrieve images by matching its feature set values. The proposed novel CBIR methodology called Effective CBIR based on hybrid image features and multilevel approach (CBIR_LTP_GLCM) integrates the hybrid features such as color features and texture features, along with multilevel approach. The color features such as mean and standard deviation are adopted in the proposed method to represent the global color properties of an image. This method manipulates the color input-image by processing the Hue, Saturation and Value channels of the HSV color space. This novel work is enriched with the image feature derived from Local Ternary Pattern (LTP) in addition with GLCM. So, the proposed method CBIR_LTP_GLCM is potentially charged with meaningful modifications travelling with color image manipulation and extended image retrieval accuracy with the aid of multilevel approach. The proposed methodology is experimentally compared with the existing recent CBIR versions by using the standard database such as Corel-1 k, and a user contributed database named DB_VEG. Numéro de notice : A2022-291 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s11042-022-12588-7 Date de publication en ligne : 30/03/2022 En ligne : https://doi.org/10.1007/s11042-022-12588-7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100337
in Multimedia tools and applications > vol 81 n° 20 (August 2022) . - pp[article]Remote sensing image colorization using symmetrical multi-scale DCGAN in YUV color space / Min Wu in The Visual Computer, vol 37 n° 7 (July 2021)
[article]
Titre : Remote sensing image colorization using symmetrical multi-scale DCGAN in YUV color space Type de document : Article/Communication Auteurs : Min Wu, Auteur ; Xin Jin, Auteur ; Qian Jiang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1707 - 1729 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] contraste de couleurs
[Termes IGN] données multiéchelles
[Termes IGN] image en couleur
[Termes IGN] image RVB
[Termes IGN] niveau de gris (image)
[Termes IGN] réseau antagoniste génératifRésumé : (auteur) Image colorization technique is used to colorize the gray-level image or single-channel image, which is a very significant and challenging task in image processing, especially the colorization of remote sensing images. This paper proposes a new method for coloring remote sensing images based on deep convolution generation adversarial network. The adopted generator model is a symmetrical structure using the principle of auto-encoder, and a multi-scale convolutional module is specially designed to introduce into the generator model. Thus, the proposed generator can enable the whole model to retain more image features in the process of up-sampling and down-sampling. Meanwhile, the discriminator uses residual neural network 18 that can compete with the generator, so that the generator and discriminator can effectively optimize each other. In the proposed method, the color space transformation technique is first utilized to convert remote sensing images from RGB to YUV. Then, the Y channel (a gray-level image) is used as the input of the neural network model to predict UV channels. Finally, the predicted UV channels are concatenated with the original Y channel as a whole YUV that is then transformed into RGB space to get the final color image. Experiments are conducted to test the performance of different image colorization methods, and the results show that the proposed method has good performance in both visual quality and objective indexes on the colorization of remote sensing image. Numéro de notice : A2021-540 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s00371-020-01933-2 Date de publication en ligne : 28/08/2020 En ligne : https://doi.org/10.1007/s00371-020-01933-2 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98018
in The Visual Computer > vol 37 n° 7 (July 2021) . - pp 1707 - 1729[article]Semi-supervised joint learning for hand gesture recognition from a single color image / Chi Xu in Sensors, vol 21 n° 3 (February 2021)
[article]
Titre : Semi-supervised joint learning for hand gesture recognition from a single color image Type de document : Article/Communication Auteurs : Chi Xu, Auteur ; Yunkai Jiang, Auteur ; Jun Zhou, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 1007 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] apprentissage semi-dirigé
[Termes IGN] détection d'objet
[Termes IGN] estimation de pose
[Termes IGN] image en couleur
[Termes IGN] jeu de données
[Termes IGN] reconnaissance de gestesRésumé : (auteur) Hand gesture recognition and hand pose estimation are two closely correlated tasks. In this paper, we propose a deep-learning based approach which jointly learns an intermediate level shared feature for these two tasks, so that the hand gesture recognition task can be benefited from the hand pose estimation task. In the training process, a semi-supervised training scheme is designed to solve the problem of lacking proper annotation. Our approach detects the foreground hand, recognizes the hand gesture, and estimates the corresponding 3D hand pose simultaneously. To evaluate the hand gesture recognition performance of the state-of-the-arts, we propose a challenging hand gesture recognition dataset collected in unconstrained environments. Experimental results show that, the gesture recognition accuracy of ours is significantly boosted by leveraging the knowledge learned from the hand pose estimation task. Numéro de notice : A2021-160 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/s21031007 Date de publication en ligne : 02/02/2021 En ligne : https://doi.org/10.3390/s21031007 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97076
in Sensors > vol 21 n° 3 (February 2021) . - n° 1007[article]Détermination conjointe des inondations et du type d’eau au moyen de l’imagerie multi-spectrale / Sabrine Amzil (2020)
Titre : Détermination conjointe des inondations et du type d’eau au moyen de l’imagerie multi-spectrale Type de document : Mémoire Auteurs : Sabrine Amzil, Auteur Editeur : Strasbourg : Institut National des Sciences Appliquées INSA Strasbourg Année de publication : 2020 Importance : 92 p. Format : 21 x 30 cm Note générale : bibliographie
Mémoire de soutenance de diplôme d'ingénieur INSA spécialité TopographieLangues : Français (fre) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Amazone (fleuve)
[Termes IGN] Amazonie
[Termes IGN] image Aqua-MODIS
[Termes IGN] image en couleur
[Termes IGN] image multibande
[Termes IGN] image optique
[Termes IGN] image Sentinel-SAR
[Termes IGN] image Terra-MODIS
[Termes IGN] indice d'humidité
[Termes IGN] inondation
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] série temporelleIndex. décimale : INSAS Mémoires d'ingénieur de l'INSA Strasbourg - Topographie, ex ENSAIS Résumé : (auteur) L’Amazonie, en Amérique du Sud, est connue pour ses plaines d’inondations et ses régimes saisonniers de précipitations très irréguliers à cause de plusieurs facteurs naturels et anthropiques. Les eaux amazoniennes se caractérisent non seulement par leurs grandes étendues mais également par la diversité des couleurs de ses fleuves et affluents. Ce projet de fin d’études vise à déterminer conjointement l’extension des inondations et les types d’eaux du bassin amazonien (eaux claires, laiteuses, noires, ...) par analyse de séries temporelles d’images multispectrales acquises par le capteur MODIS des satellites Aqua et Terra au cours de l’année 2017. La détection des inondations a été réalisée en se basant sur une combinaison d’indices spectraux NDVI, SWIb et AWEI après la recherche des valeurs seuils de chacun de ces indices. Tandis que la classification des types d’eaux s’effectue en fonction de la réponse de la valeur moyenne mensuelle du SWIb. Cette étude nous permet donc de mieux comprendre le bilan hydrologique et sédimentaire des zones d’inondation et fleuves amazoniens en se basant uniquement sur les apports de la télédétection optique. Note de contenu : Introduction
1- Etat de l'art
2- Création des méthodes de détection et classification des eaux
3- Evaluation et validation de la méthode
Conclusion et perspectivesNuméro de notice : 28577 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Mémoire ingénieur INSAS Organisme de stage : LEGOS (Toulouse) DOI : sans En ligne : http://eprints2.insa-strasbourg.fr/4187/1/M%C3%A9moire_PFE_AMZIL.pdf Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97884 Potentialités de l’imagerie couleur embarquée pour la détection et la cartographie des maladies fongiques de la vigne / Florent Abdelghafour (2019)
Titre : Potentialités de l’imagerie couleur embarquée pour la détection et la cartographie des maladies fongiques de la vigne Type de document : Thèse/HDR Auteurs : Florent Abdelghafour, Auteur ; Jean-Pierre Da Costa, Directeur de thèse ; Christian Germain, Directeur de thèse Editeur : Bordeaux : Université de Bordeaux Année de publication : 2019 Importance : 174 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse présentée pour obtenir le grade Docteur, Automatique, Productique, Signal et Image, Ingénierie CognitiveLangues : Français (fre) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] cartographie thématique
[Termes IGN] classification dirigée
[Termes IGN] classification pixellaire
[Termes IGN] image en couleur
[Termes IGN] instrument embarqué
[Termes IGN] maladie phytosanitaire
[Termes IGN] modèle stochastique
[Termes IGN] seuillage d'image
[Termes IGN] surveillance de la végétation
[Termes IGN] tenseur
[Termes IGN] texture d'image
[Termes IGN] traitement d'image
[Termes IGN] viticultureIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Le mildiou de la vigne est une phytopathologie d'origine fongique particulièrement inquiétante pour la filière viticole. L'objectif de cette thèse est d'étudier les potentialités de l'imagerie couleur embarquée pour estimer l'état sanitaire des vignobles affectés par le mildiou à l'échelle intra-parcellaire. La solution proposée vise à assister les réseaux de surveillance épidémiologique dans l'estimation des risques sanitaires et dans la préconisation de plans de lutte chimique. En pratique, la chaîne de traitement d'images construite est dédiée à la détection, au dénombrement et à la mesure des tissus symptomatiques du mildiou. Cette chaîne est conçue pour traiter des images acquises directement à la parcelle dans les conditions de travail viticole.La chaîne de traitement s’appuie des représentations structure-couleur et des modèles probabilistes des classes des tissus présents dans les vignes étudiées. Elle opère en trois étapes : formuler des descripteurs pour extraire les propriétés caractéristiques et discriminantes de chaque classe ; modéliser les distributions statistiques de ces descripteurs dans chacune des classes ; affecter chaque pixel à une classe selon son adéquation à leurs modèles. Les descripteurs combinent le tenseur local de structure (LST) avec des statistiques colorimétriques calculées dans le voisinage du pixel considéré. Pour tenir compte de la nature spécifique des LST, les descripteurs font l'objet de transformations pour être représentés dans l'espace log-euclidien. Dans cet espace, il devient possible de modéliser les classes de tissus d'intérêt par des distributions de mélanges de gaussiennes multivariées des représentations structure-couleur. Enfin, la classification est réalisée par Maximum A Posteriori (MAP). Cette chaîne de traitement est appliquée dans un premier temps à des images de vigne saine. Il s'agit de segmenter une image en classes d'organes (feuillage, grappes ou inflorescences et tiges). Les classifications réalisées se montrent très performantes. De plus, la chaîne de traitement s'avère robuste au réglage des principaux hyper-paramètres.Dans un second temps, la chaîne de traitement est adaptée pour traiter des images comportant des symptômes du mildiou ainsi que des facteurs confondants tels que nécroses, décolorations, carences, plaies mécaniques. La méthode de décision s’appuie sur une reconstruction des symptômes par croissance autour de germes. Les critères utilisés reposent sur les représentations structure-couleur et les modèles probabilistes déjà définis. La nouvelle chaîne de traitement permet de détecter de façon fiable les symptômes du mildiou et d'estimer la surface des tissus affectés. Note de contenu : Introduction
1- Etat de l'art
2- -Dispositif expérimental : matériel végétal, instrumentation et protocole de suivi
3- Modéliser conjointement la texture et la couleur dans les images de proxi-détection
4- Reconnaissance des organes de la vigne
5- Détection des symptômes du mildiou de la vigne et estimation de l’intensité de l’infection
Conclusion et perspectivesNuméro de notice : 28573 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Automatique, Productique, Signal et Image, Ingénierie Cognitive : Bordeaux : 2019 Organisme de stage : Laboratoire de l’Intégration du Matériau au Système (Talence) nature-HAL : Thèse En ligne : https://tel.archives-ouvertes.fr/tel-02499420/document Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97765 Joint inpainting of depth and reflectance with visibility estimation / Marco Bevilacqua in ISPRS Journal of photogrammetry and remote sensing, vol 125 (March 2017)PermalinkOn the fusion of lidar and aerial color imagery to detect urban vegetation and buildings / Madhurima Bandyopadhyay in Photogrammetric Engineering & Remote Sensing, PERS, vol 83 n° 2 (February 2017)PermalinkA manifold alignment approach for hyperspectral image visualization with natural color / Danping Liao in IEEE Transactions on geoscience and remote sensing, vol 54 n° 6 (June 2016)PermalinkA computational introduction to digital image processing / Alasdair McAndrew (2016)PermalinkDu photon au pixel / Henri Maître (2015)PermalinkEnabling UAV-based 3D mapping, Pix4D / Anonyme in GIM international, vol 26 n° 7 (July 2012)PermalinkDétection et localisation 3D de panneaux de signalisation [diaporama] / Bahman Soheilian (08/03/2012)PermalinkImagerie numérique / Christine Fernandez-Maloigne (2012)PermalinkColors of the past: color image segmentation in historical topographic maps based on homogeneity / S. Leyk in Geoinformatica, vol 14 n° 1 (January 2010)PermalinkPermalink