Descripteur
Documents disponibles dans cette catégorie (1380)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Assessing environmental impacts of urban growth using remote sensing / John C. Trinder in Geo-spatial Information Science, vol 23 n° 1 (March 2020)
[article]
Titre : Assessing environmental impacts of urban growth using remote sensing Type de document : Article/Communication Auteurs : John C. Trinder, Auteur ; Qingxiang Liu, Auteur Année de publication : 2020 Article en page(s) : pp 20 - 39 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse de mélange spectral d’extrémités multiples
[Termes IGN] changement d'utilisation du sol
[Termes IGN] croissance urbaine
[Termes IGN] développement durable
[Termes IGN] image Landsat
[Termes IGN] impact sur l'environnement
[Termes IGN] réseau neuronal artificiel
[Termes IGN] service écosystémique
[Termes IGN] Sydney (Nouvelle-Galles du Sud)
[Termes IGN] Wuhan (Chine)Résumé : (auteur) This paper provides a study of the changes in land use in urban environments in two cities, Wuhan, China and western Sydney in Australia. Since mixed pixels are a characteristic of medium resolution images such as Landsat, when used for the classification of urban areas, due to changes in urban ground cover within a pixel, Multiple Endmember Spectral Mixture Analysis (MESMA) together with Super-Resolution Mapping (SRM) are employed to derive class fractions to generate classification maps at a higher spatial resolution using an Artificial Neural Network (ANN) predicted Wavelet method. Landsat images over the two cities for a 30-year period, are classified in terms of vegetation, buildings, soil and water. The classifications are then processed using Indifrag software to assess the levels of fragmentation caused by changes in the areas of buildings, vegetation, water and soil over the 30 years. The extents of fragmentation of vegetation, buildings, water and soil for the two cities are compared, while the percentages of vegetation are compared with recommended percentages of green space for urban areas for the benefit of health and well-being of inhabitants. Changes in Ecosystem Service Values (ESVs) resulting from the urbanization have been assessed for Wuhan and Sydney. The UN Sustainable Development Goals (SDG) for urban areas are being assessed by researchers to better understand how to achieve the sustainability of cities. Numéro de notice : A2020-162 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/10095020.2019.1710438 Date de publication en ligne : 21/01/2020 En ligne : https://doi.org/10.1080/10095020.2019.1710438 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94822
in Geo-spatial Information Science > vol 23 n° 1 (March 2020) . - pp 20 - 39[article]Sea-land segmentation using deep learning techniques for Landsat-8 OLI imagery / Ting Yang in Marine geodesy, Vol 43 n° 2 (March 2020)
[article]
Titre : Sea-land segmentation using deep learning techniques for Landsat-8 OLI imagery Type de document : Article/Communication Auteurs : Ting Yang, Auteur ; Zhonghua Hong, Auteur ; Yun Zhang, Auteur Année de publication : 2020 Article en page(s) : pp 105 - 133 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] extraction automatique
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image Landsat-OLI
[Termes IGN] littoral
[Termes IGN] segmentation d'image
[Termes IGN] segmentation sémantique
[Termes IGN] trait de côteRésumé : (auteur) Automated coastline extraction from optical satellites is fundamental to coastal mapping, and sea-land segmentation is the core technology of coastline extraction. Deep convolutional neural networks (DCNNs) have performed well in semantic segmentation in recent years. However, sea-land segmentation using deep learning techniques remains a challenging task, due to the lack of a benchmark dataset and the difficulty of deciding which semantic segmentation model to use. We present a comparative framework of sea-land segmentation to Landsat-8 OLI imagery via semantic segmentation in deep learning techniques. Three issues are investigated: (1) constructing a sea-land benchmark dataset using Landsat-8 Operational Land Imager (OLI) imagery consisting of 18,000 km2 of coastline around China; (2) evaluating the feasibility and performance of sea-land segmentation by comparing the accuracy assessment, time complexity, spatial complexity and stability of state-of-the-art DCNNs methods; (3) choosing the most suitable semantic segmentation model for sea-land segmentation in accordance with Akaike information criterion (AIC) and Bayesian information criterion (BIC) model selection. Results show that the average test accuracy achieves over 99% accuracy, and the mean Intersection over Unions (mean IoU) is above 92%. These findings demonstrate that the Fully Convolutional DenseNet (FC-enseNet) performs better than other state-of-the-art methods in sea-land segmentation, based on both AIC and BIC. Considering training time efficiency, DeeplabV3+ performs better for sea-land segmentation. The sea-land segmentation benchmark dataset is available at: https://pan.baidu.com/s/1BlnHiltOLbLKe4TG8lZ5xg. Numéro de notice : A2020-220 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/01490419.2020.1713266 Date de publication en ligne : 20/01/2020 En ligne : https://doi.org/10.1080/01490419.2020.1713266 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94917
in Marine geodesy > Vol 43 n° 2 (March 2020) . - pp 105 - 133[article]Spectral–spatial–temporal MAP-based sub-pixel mapping for land-cover change detection / Da He in IEEE Transactions on geoscience and remote sensing, vol 58 n° 3 (March 2020)
[article]
Titre : Spectral–spatial–temporal MAP-based sub-pixel mapping for land-cover change detection Type de document : Article/Communication Auteurs : Da He, Auteur ; Yanfei Zhong, Auteur ; Liangpei Zhang, Auteur Année de publication : 2020 Article en page(s) : pp 1696 - 1717 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] changement d'occupation du sol
[Termes IGN] classification du maximum a posteriori
[Termes IGN] détection de changement
[Termes IGN] distribution spatiale
[Termes IGN] données spatiotemporelles
[Termes IGN] image Aqua-MODIS
[Termes IGN] image Landsat-8
[Termes IGN] image Landsat-TM
[Termes IGN] image multibande
[Termes IGN] image Quickbird
[Termes IGN] image Terra-MODIS
[Termes IGN] modèle dynamique
[Termes IGN] optimisation spatiale
[Termes IGN] précision infrapixellaire
[Termes IGN] série temporelle
[Termes IGN] urbanisation
[Termes IGN] Wuhan (Chine)
[Termes IGN] zone urbaineRésumé : (Auteur) The maximum a posteriori (MAP) estimation model-based sub-pixel mapping (SPM) method is an alternative way to solve the ill-posed SPM problem. The MAP estimation model has been proven to be an effective SPM approach and has been extensively developed over the past few years, as a result of its effective regularization capability that comes from the spatial regularization model. However, various spatial regularization models do not always truly reflect the detailed spatial distribution in a real situation, and the over-smoothing effect of the spatial regularization model always tends to efface the detailed structural information. In this article, under the scenario of time-series observation by remote sensing imagery, the joint spectral–spatial–temporal MAP-based (SST_MAP) model for SPM is proposed. In SST_MAP, a newly developed temporal regularization model is added to the MAP model, based on the prerequisite for a temporally close fine image covering the same study region. This available fine image can provide the specific spatial structures most closely conforming to the ground truth for a more precise constraint, thereby reducing the over-smoothing effect. Furthermore, the three dimensions are mutually balanced and mutually constrained, to reach an equilibrium point and achieve restoration of both smooth areas for the homogeneous land-cover classes and a detailed structure for the heterogeneous land-cover classes. Four experiments were designed to validate the proposed SST_MAP: three synthetic-image experiments and one real-image experiment. The restoration results confirm the superiority of the proposed SST_MAP model. Notably, under the background of time-series observation, SST_MAP provides an alternative way of land-cover change detection (LCCD), achieving both detailed spatial-scale and high-frequency temporal LCCD observation for the study case of urbanization analysis within the city of Wuhan in China. Numéro de notice : A2020-088 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2947708 Date de publication en ligne : 18/12/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2947708 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94662
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 3 (March 2020) . - pp 1696 - 1717[article]Thermal unmixing based downscaling for fine resolution diurnal land surface temperature analysis / Jiong Wang in ISPRS Journal of photogrammetry and remote sensing, vol 161 (March 2020)
[article]
Titre : Thermal unmixing based downscaling for fine resolution diurnal land surface temperature analysis Type de document : Article/Communication Auteurs : Jiong Wang, Auteur ; Olivier Schmitz, Auteur ; Meng Lu, Auteur ; Derek Karssenberg, Auteur Année de publication : 2020 Article en page(s) : pp 76 - 89 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] données spatiotemporelles
[Termes IGN] factorisation de matrice non-négative
[Termes IGN] image Aqua-MODIS
[Termes IGN] image Landsat
[Termes IGN] image Terra-MODIS
[Termes IGN] image thermique
[Termes IGN] mise à l'échelle
[Termes IGN] Pays-Bas
[Termes IGN] radiance
[Termes IGN] réduction
[Termes IGN] température de surface
[Termes IGN] variation diurneRésumé : (Auteur) Due to the limitation in the availability of airborne imagery data that are high in both spatial and temporal resolution, land surface temperature (LST) dense in both space and time can only be obtained through downscaling of frequently acquired LST with coarse resolution. Many conventional downscaling techniques are only feasible in an ideal situation, where land surface factors as LST predictors are continuously available for downscaling the LST. These techniques are also applied only at large scales ignoring sub-regional variations. Based upon unmixing based approaches, this study presents an LST downscaling workflow, where only the coarse resolution of 1 km LST image at the prediction time is required. The conceptual backbone of the study is assuming that the LST patterns are governed by thermal behaviors of a fixed set of temperature sensitive land surface components. In operation, the study focuses on central Netherlands covering an area of 90 × 90 km. The MODIS and Landsat imagery acquired simultaneously are used as a coarse-fine resolution pair to derive downscaling mechanism which is then applied to coarse imagery at a time with missing fine resolution imagery. First, an optimal number of thermal components are extracted at fine resolution through the application of the non-negative matrix factorization (NMF). These components are assumed to possess unique temperature change patterns caused by combined effects of land cover change, radiance change, or both. Given the LST change and thermal components at coarse resolution, the LST change load of each component can then be obtained at the coarse resolution by solving a system of linear equations encoding thermal component-LST relationship. Such LST change load of thermal components is further unmixed to fine resolution and linearly weighted by the component distribution at fine resolution to obtain the fine resolution LST change. During the process, the coarse LST data is used directly without any resampling practice as shown in previous studies. Thus the technique is less time consuming even with a large downscaling factor of 30. The downscaled fine resolution LST represents an R-squared of over 0.7 outperforming classic downscaling techniques. The downscaled LST differentiates temperature over major land types and captures both seasonal and diurnal LST dynamics. Numéro de notice : A2020-063 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.01.014 Date de publication en ligne : 16/01/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.01.014 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94580
in ISPRS Journal of photogrammetry and remote sensing > vol 161 (March 2020) . - pp 76 - 89[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020031 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020033 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020032 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Computer vision-based framework for extracting tectonic lineaments from optical remote sensing data / Ehsan Farahbakhsh in International Journal of Remote Sensing IJRS, vol 41 n°5 (01 - 08 février 2020)
[article]
Titre : Computer vision-based framework for extracting tectonic lineaments from optical remote sensing data Type de document : Article/Communication Auteurs : Ehsan Farahbakhsh, Auteur ; Rohitash Chandra, Auteur ; Hugo K. H. Olierook, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1760 - 1787 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] Australie occidentale (Australie)
[Termes IGN] cartographie géologique
[Termes IGN] détection de contours
[Termes IGN] digue
[Termes IGN] faille géologique
[Termes IGN] filtre
[Termes IGN] image Landsat-8
[Termes IGN] linéament
[Termes IGN] tectonique
[Termes IGN] vision par ordinateurRésumé : (auteur) The extraction of tectonic lineaments from digital satellite data is a fundamental application in remote sensing. The location of tectonic lineaments such as faults and dykes are of interest for a range of applications, particularly because of their association with hydrothermal mineralization. Although a wide range of applications have utilized computer vision techniques, a standard workflow for application of these techniques to tectonic lineament extraction is lacking. We present a framework for extracting tectonic lineaments using computer vision techniques. The proposed framework is a combination of edge detection and line extraction algorithms for extracting tectonic lineaments using optical remote sensing data. It features ancillary computer vision techniques for reducing data dimensionality, removing noise and enhancing the expression of lineaments. The efficiency of two convolutional filters are compared in terms of enhancing the lineaments. We test the proposed framework on Landsat 8 data of a mineral-rich portion of the Gascoyne Province in Western Australia. To validate the results, the extracted lineaments are compared to geologically mapped structures by the Geological Survey of Western Australia (GSWA). The results show that the best correlation between our extracted tectonic lineaments and the GSWA tectonic lineament map is achieved by applying a minimum noise fraction transformation and a Laplacian filter. Application of a directional filter shows a strong correlation with known sites of hydrothermal mineralization. Hence, our method using either filter can be used for mineral prospectivity mapping in other regions where faults are exposed and observable in optical remote sensing data. Numéro de notice : A2020-464 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/01431161.2019.1674462 Date de publication en ligne : 11/10/2019 En ligne : https://doi.org/10.1080/01431161.2019.1674462 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94902
in International Journal of Remote Sensing IJRS > vol 41 n°5 (01 - 08 février 2020) . - pp 1760 - 1787[article]Landslide susceptibility mapping using maximum entropy and support vector machine models along the highway corridor, Garhwal Himalaya / Vijendra Kumar Pandey in Geocarto international, vol 35 n° 2 ([01/02/2020])PermalinkA novel fire index-based burned area change detection approach using Landsat-8 OLI data / Sicong Liu in European journal of remote sensing, vol 53 n° 1 (2020)PermalinkTransferring deep learning models for cloud detection between Landsat-8 and Proba-V / Gonzalo Mateo-García in ISPRS Journal of photogrammetry and remote sensing, vol 160 (February 2020)PermalinkApplication of geographic Information system and remote sensing in multiple criteria analysis to identify priority areas for biodiversity conservation in Vietnam / Xuan Dinh Vu (2020)PermalinkCartographie des essences forestières à partir de séries temporelles d’images satellitaires à hautes résolutions : stabilité des prédictions, autocorrélation spatiale et cohérence avec la phénologie observée in situ / Nicolas Karasiak (2020)PermalinkComparison of multi-seasonal Landsat 8, Sentinel-2 and hyperspectral images for mapping forest alliances in Northern California / Matthew L. Clark in ISPRS Journal of photogrammetry and remote sensing, vol 159 (January 2020)PermalinkDistribution spatiale et dynamique de la population de palmiers rôniers, Borassus aethiopum Mart., par approche de la télédétection et du Système d’Information Géographique (SIG) de la réserve de Lamto (Centre de la Côte d’Ivoire) / Kouakou Guy-Casimir Douffi (2020)PermalinkEtudes des dynamiques spatiales d’évolution de l’occupation et de l’utilisation des sols dans la fenêtre lacustre camerounaise du lac Tchad et son arrière-pays à partir des grandes sécheresses sahéliennes de 1970 / Paul Gérard Gbetkom (2020)PermalinkIdentification of alpine glaciers in the central Himalayas using fully polarimetric L-Band SAR data / Guo-Hui Yao in IEEE Transactions on geoscience and remote sensing, vol 58 n° 1 (January 2020)PermalinkRegional-scale forest mapping over fragmented landscapes using global forest products and Landsat time series classification / Viktor Myroniuk in Remote sensing, vol 12 n° 1 (January 2020)Permalink