International Journal of Remote Sensing IJRS / Remote sensing and photogrammetry society . vol 29 n° 7Paru le : 01/04/2008 |
[n° ou bulletin]
est un bulletin de International Journal of Remote Sensing IJRS / Remote sensing and photogrammetry society (1980 -)
[n° ou bulletin]
|
Exemplaires(1)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
080-08051 | RAB | Revue | Centre de documentation | En réserve L003 | Disponible |
Dépouillements
Ajouter le résultat dans votre panierASTER DEMs for geomatic and geoscientific applications: a review / Thierry Toutin in International Journal of Remote Sensing IJRS, vol 29 n° 7 (April 2008)
[article]
Titre : ASTER DEMs for geomatic and geoscientific applications: a review Type de document : Article/Communication Auteurs : Thierry Toutin , Auteur Année de publication : 2008 Article en page(s) : pp 1855 - 1875 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] données localisées 3D
[Termes IGN] extraction de données
[Termes IGN] image optique
[Termes IGN] image Terra-ASTER
[Termes IGN] modèle numérique de terrain
[Termes IGN] modèle stéréoscopique
[Termes IGN] positionnement absoluRésumé : (Auteur) Most geoscientific applications using georeferenced cartographic/geospatial data require good knowledge and visualization of the topography of the Earth's surface. For example, mapping of geomorphological features is hardly feasible from a single image; three-dimensional (3D) information has to be generated or added for a better interpretation of the two-dimensional data. Since the early emergence of earth observation satellites, researchers have investigated different methods of extracting 3D information using satellite data. Since the early experiments with the Earth Terrain Camera flown onboard SkyLab in 1973 to 1974, various analogue or digital sensors in the visible or microwave spectrum have been flown to provide researchers and geoscientists with spatial data for extracting and interpreting 3D information of the Earth's surface. Stereo viewing using digital scanner images, such as with the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) along-track sensors, was, and still is, the most common method used by the mapping, geomatic, and geoscientific communities for generating digital elevation models (DEMs). This paper will review the basic characteristics of stereoscopy and its application to the ASTER system for DEM generation. It will thus address the methods, algorithms and commercial software to extract absolute or relative elevation and assess their performance using the results from various research and commercial organizations. It will finally discuss the use of stereo ASTER DEMs for different geomatic and geoscientific applications. Copyright Taylor & Francis Numéro de notice : A2008-097 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/01431160701408477 En ligne : https://doi.org/10.1080/01431160701408477 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=29092
in International Journal of Remote Sensing IJRS > vol 29 n° 7 (April 2008) . - pp 1855 - 1875[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 080-08051 RAB Revue Centre de documentation En réserve L003 Disponible Effects of spatial resolution ratio in image fusion / Y. Ling in International Journal of Remote Sensing IJRS, vol 29 n° 7 (April 2008)
[article]
Titre : Effects of spatial resolution ratio in image fusion Type de document : Article/Communication Auteurs : Y. Ling, Auteur ; Manfred Ehlers, Auteur ; E. Usery, Auteur ; Marguerite Madden, Auteur Année de publication : 2008 Article en page(s) : pp 2157 - 2167 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] fusion d'images
[Termes IGN] image à basse résolution
[Termes IGN] image à haute résolution
[Termes IGN] image multibande
[Termes IGN] image panchromatique
[Termes IGN] limite de résolution géométriqueRésumé : (Auteur) In image fusion, the spatial resolution ratio can be defined as the ratio between the spatial resolution of the high-resolution panchromatic image and that of the low-resolution multispectral image. This paper attempts to assess the effects of the spatial resolution ratio of the input images on the quality of the fused image. Experimental results indicate that a spatial resolution ratio of 1 : 10 or higher is desired for optimal multisensor image fusion provided the input panchromatic image is not downsampled to a coarser resolution. Due to the synthetic pixels generated from resampling, the quality of the fused image decreases as the spatial resolution ratio decreases (e.g. from 1 : 10 to 1 : 30). However, even with a spatial resolution ratio as small as 1 : 30, the quality of the fused image is still better than the original multispectral image alone for feature interpretation. In cases where the spatial resolution ratio is too small (e.g. 1 : 30), to obtain better spectral integrity of the fused image, one may downsample the input high-resolution panchromatic image to a slightly lower resolution before fusing it with the multispectral image. Copyright Taylor & Francis Numéro de notice : A2008-098 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/01431160701408345 En ligne : https://doi.org/10.1080/01431160701408345 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=29093
in International Journal of Remote Sensing IJRS > vol 29 n° 7 (April 2008) . - pp 2157 - 2167[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 080-08051 RAB Revue Centre de documentation En réserve L003 Disponible The early explanatory power of NDVI in crop yield modelling / L. Wall in International Journal of Remote Sensing IJRS, vol 29 n° 7 (April 2008)
[article]
Titre : The early explanatory power of NDVI in crop yield modelling Type de document : Article/Communication Auteurs : L. Wall, Auteur ; D. Larocque, Auteur ; et al., Auteur Année de publication : 2008 Article en page(s) : pp 2211 - 2225 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse comparative
[Termes IGN] analyse diachronique
[Termes IGN] blé (céréale)
[Termes IGN] Canada
[Termes IGN] image NOAA-AVHRR
[Termes IGN] indice d'humidité
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] prévision
[Termes IGN] rendement agricole
[Termes IGN] série temporelleRésumé : (Auteur) The objective of this paper is to study, on a weekly basis, the explanatory power of one satellite-based measurement, the Normalized Difference Vegetation Index (NDVI), for wheat yield modelling in 40 census agricultural regions (CAR) in the Canadian Prairies during the whole growing season using 16 years of NOAA AVHRR satellite data (between 1987 and 2002). We also explore the relative value of NDVI compared with a land-based measurement, the Cumulative Moisture Index (CMI). By developing a series of weekly wheat yield models over the course of the growing season, we are able to determine the accuracy of different models. Our findings indicate that NDVI possesses explanatory power 4 weeks earlier in the season than CMI. Copyright Taylor & Francis Numéro de notice : A2008-099 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/01431160701395252 En ligne : https://doi.org/10.1080/01431160701395252 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=29094
in International Journal of Remote Sensing IJRS > vol 29 n° 7 (April 2008) . - pp 2211 - 2225[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 080-08051 RAB Revue Centre de documentation En réserve L003 Disponible Artificial immune-based supervised classifier for land-cover classification / M. Pal in International Journal of Remote Sensing IJRS, vol 29 n° 7 (April 2008)
[article]
Titre : Artificial immune-based supervised classifier for land-cover classification Type de document : Article/Communication Auteurs : M. Pal, Auteur Année de publication : 2008 Article en page(s) : pp 2273 - 2291 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification dirigée
[Termes IGN] classification par arbre de décision
[Termes IGN] classification par maximum de vraisemblance
[Termes IGN] identification automatique
[Termes IGN] image Landsat-ETM+
[Termes IGN] occupation du sol
[Termes IGN] précision de la classification
[Termes IGN] système immunitaire artificielRésumé : (Auteur) This paper explores the potential of an artificial immune-based supervised classification algorithm for land-cover classification. This classifier is inspired by the human immune system and possesses properties similar to nonlinear classification, self/non-self identification, and negative selection. Landsat ETM+ data of an area lying in Eastern England near the town of Littleport are used to study the performance of the artificial immune-based classifier. A univariate decision tree and maximum likelihood classifier were used to compare its performance in terms of classification accuracy and computational cost. Results suggest that the artificial immune-based classifier works well in comparison with the maximum likelihood and the decision-tree classifiers in terms of classification accuracy. The computational cost using artificial immune based classifier is more than the decision tree but less than the maximum likelihood classifier. Another data set from an area in Spain is also used to compare the performance of immune based supervised classifier with maximum likelihood and decision-tree classification algorithms. Results suggest an improved performance with the immune-based classifier in terms of classification accuracy with this data set, too. The design of an artificial immune-based supervised classifier requires several user-defined parameters to be set, so this work is extended to study the effect of varying the values of six parameters on classification accuracy. Finally, a comparison with a backpropagation neural network suggests that the neural network classifier provides higher classification accuracies with both data sets, but the results are not statistically significant. Copyright Taylor & Francis Numéro de notice : A2008-100 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/01431160701408402 En ligne : https://doi.org/10.1080/01431160701408402 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=29095
in International Journal of Remote Sensing IJRS > vol 29 n° 7 (April 2008) . - pp 2273 - 2291[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 080-08051 RAB Revue Centre de documentation En réserve L003 Disponible