Descripteur
Documents disponibles dans cette catégorie (23)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Multistrategy ensemble regression for mapping of built-up density and height with Sentinel-2 data / Christian Geiss in ISPRS Journal of photogrammetry and remote sensing, vol 170 (December 2020)
[article]
Titre : Multistrategy ensemble regression for mapping of built-up density and height with Sentinel-2 data Type de document : Article/Communication Auteurs : Christian Geiss, Auteur ; Henrik Schrade, Auteur ; Patrick Aravena Pelizari, Auteur ; Hannes Taubenböck, Auteur Année de publication : 2020 Article en page(s) : pp 57-71 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] Allemagne
[Termes IGN] apprentissage automatique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] hauteur du bâti
[Termes IGN] image multibande
[Termes IGN] image Sentinel-MSI
[Termes IGN] image TanDEM-X
[Termes IGN] modèle de régression
[Termes IGN] morphologie urbaine
[Termes IGN] pondération
[Termes IGN] processus gaussien
[Termes IGN] zone urbaine denseRésumé : (Auteur) In this paper, we establish a workflow for estimation of built-up density and height based on multispectral Sentinel-2 data. To do so, we render the estimation of built-up density and height as a supervised learning problem. Given the rational level of measurement of those two target variables, the regression estimation problem is regarded as finding the mapping between an incoming vector, i.e., ubiquitously available features computed from Sentinel-2 data, and an observable output (i.e., training set), which is derived over spatially limited areas in an automated manner. As such, training sets are automatically generated from a joint exploitation of TanDEM-X mission elevation data and Sentinel-2 imagery, and, as an alternative, from cadastral sources. The training sets are used to regress the target variables for spatial processing units which correspond to urban neighborhood scales. From a methodological point of view, we introduce a novel ensemble regression approach, i.e., multistrategy ensemble regression (MSER), based on advanced machine learning-based regression algorithms including Random Forest Regression, Support Vector Regression, Gaussian Process Regression, and Neural Network Regression. To establish a robust ensemble, those algorithms are learned with a modified version of the AdaBoost.RT algorithm. However, to reliably ensure diversity between single boosted regressors, we include a random feature subspace method in the procedure. In contrast to existing approaches, we selectively prune non-favorable regressors trained during the boosting procedure and calculate the final prediction by a weighted mean function on the residual models to ensure enhanced accuracy properties of predictions. Finally, outputs are concatenated into a single prediction with a decision fusion strategy. Experimental results are obtained from four test areas which cover the settlement areas of the four largest German cites, i.e., Berlin, Hamburg, Munich, and Cologne. The results unambiguously underline the beneficial properties of the MSER approach, since all best predictions were obtained with a boosted regressor in conjunction with a decision fusion strategy in a comparative setup. The mean absolute errors of corresponding models vary between 3 and 16% and 1–5.4 m with respect to built-up density and height, respectively, depending on the validation strategy, size of the spatial processing units, and test area. Also in a domain adaptation setup (i.e., when learning a model over a source domain and applying it over a geographically different target domain) numerous predictions show comparable accuracy levels as predictions obtained within a source domain. This further underlines the viability to transfer a model and, thus, enable a substitution of the training data in the target domains. Numéro de notice : A2020-704 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.10.004 Date de publication en ligne : 22/10/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.10.004 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96231
in ISPRS Journal of photogrammetry and remote sensing > vol 170 (December 2020) . - pp 57-71[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2020121 RAB Revue Centre de documentation En réserve L003 Disponible Estimation of variance and spatial correlation width for fine-scale measurement error in digital elevation model / Mikhail L. Uss in IEEE Transactions on geoscience and remote sensing, vol 58 n° 3 (March 2020)
[article]
Titre : Estimation of variance and spatial correlation width for fine-scale measurement error in digital elevation model Type de document : Article/Communication Auteurs : Mikhail L. Uss, Auteur ; Benoit Vozel, Auteur ; Vladimir V. Lukin, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1941 - 1956 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] Advanced Spaceborne Thermal Emission and Reflection Radiometer
[Termes IGN] analyse multivariée
[Termes IGN] corrélation automatique de points homologues
[Termes IGN] courbe épipolaire
[Termes IGN] erreur de mesure
[Termes IGN] image ALOS
[Termes IGN] image TanDEM-X
[Termes IGN] modèle d'erreur
[Termes IGN] modèle numérique de surface
[Termes IGN] mouvement brownien
[Termes IGN] varianceRésumé : (Auteur) In this article, we borrow from the blind noise parameter estimation (BNPE) methodology early developed in the image processing field an original and innovative no-reference approach to estimate digital elevation model (DEM) vertical error parameters without resorting to a reference DEM. The challenges associated with the proposed approach related to the physical nature of the error and its multifactor structure in DEM are discussed in detail. A suitable multivariate method is then developed for estimating the error in gridded DEM. It is built on a recently proposed vectorial BNPE method for estimating spatially correlated noise using noise informative areas and fractal Brownian motion. The new multivariate method is derived to estimate the effect of the stacking procedure and that of the epipolar line error on local (fine-scale) standard deviation and autocorrelation function width of photogrammetric DEM measurement error. Applying the new estimator to Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) GDEM2 and Advanced Land Observing Satellite (ALOS) World 3D DEMs, good agreement of derived estimates with results available in the literature is evidenced. Adopted for TanDEM-X-DEM, estimates obtained agree well with the values provided in the height error map. In future works, the proposed no-reference method for analyzing DEM error can be extended to a larger number of predictors for accounting for other factors influencing remote sensing (RS) DEM accuracy. Numéro de notice : A2020-092 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2951178 Date de publication en ligne : 28/11/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2951178 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94666
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 3 (March 2020) . - pp 1941 - 1956[article]
Titre : Advances in SAR: Sensors, Methodologies, and Applications Type de document : Monographie Auteurs : Timo Balz, Éditeur scientifique ; Uwe Soergel, Éditeur scientifique ; Mattia Crespi, Éditeur scientifique ; Batuhan Osmanoglu, Éditeur scientifique Editeur : Bâle [Suisse] : Multidisciplinary Digital Publishing Institute MDPI Année de publication : 2018 Importance : 530 p. Format : 17 x 24 cm ISBN/ISSN/EAN : 978-3-03897-183-2 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] étalonnage
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-SAR
[Termes IGN] image TanDEM-X
[Termes IGN] image TerraSAR-X
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] polarimétrie radar
[Termes IGN] télédétection en hyperfréquenceRésumé : (éditeur) The key importance of radar remote sensing for civil applications has been recognized for decades, and enormous scientific and technical developments have been carried out to further improve SAR sensors and SAR data processing. In recent years, SAR satellite constellations, consisting of two or more satellites, are becoming the “new normal” in SAR remote sensing. The present availability of SAR sensor constellations, such as Cosmo SkyMed, TerraSAR-X/TanDEM-X, and the new Copernicus sensors Sentinel-1A and 1B, supply a continuous stream of imagery with a unique short revisit cycle of only six days. Together with many more operational and planned SAR satellite systems, such as Geo-Fen 3 or NASA ISRO SAR (NISAR), this unprecedented amount of high-quality SAR data is suitable for a variety of applications, provided proper data processing methodology are applied. In "Advances in SAR: Sensors, Methodologies, and Applications" advancements in the field of hardware, software, and applications are presented, covering a wide range of topics. Note de contenu : 1- Pre-flight SAOCOM-1A SAR performance assessment by outdoor campaign
2- On the design of radar corner reflectors for deformation monitoring in
multi-frequency InSAR
3- Identification of C-Band radio frequency interferences from Sentinel-1 data
4- An accelerated backprojection algorithm for monostatic and bistatic SAR processing
5- Signal processing for a multiple-input,division frequency-modulated continuous wave (FMCW)
6- Fast and efficient correction of ground moving targets in a Synthetic Aperture Radar, single-look complex image
7- A unified algorithm for channel imbalance and antenna phase center position calibration of a single-pass multi-baseline TomoSAR System
8- InSAR Deformation Analysis with Distributed Scatterers: A Review Complemented by
New Advances
9- Modeling orbital error in InSAR interferogram using frequency and spatial domain
based methods
10- Ionospheric reconstructions using Faraday rotation in spaceborne polarimetric SAR data
11- An efficient maximum likelihood estimation approach of multi-baseline SAR interferometry for refined topographic mapping in mountainous areas
12- Elevation extraction and deformation monitoring by multitemporal InSAR of Lupu Bridge in Shanghai
13- Ground deformations around the Toktogul reservoir, Kyrgyzstan, from Envisat ASAR and Sentinel-1 data - A case study about the impact of atmospheric corrections on InSAR
time series
14- Time series analysis of very slow landslides in the Three Gorges region through small baseline SAR offset tracking
15- Landslide displacement monitoring with split- bandwidth interferometry: A case study of the shuping landslide in the Three Gorges area
16- Split-band interferometry-assisted phase unwrapping for the phase ambiguities correction
17- Better estimated IEM input parameters using random fractal geometry applied on
multi-frequency SAR data
18- The role of resolution in the estimation of fractal dimension maps From SAR data
19- Statistical modeling of polarimetric SAR data: A survey and challenges
20- Multi-feature segmentation for high-resolution polarimetric SAR data based on fractal net evolution approach
21- PolSAR land cover classification based on roll-invariant and selected hidden polarimetric features in the rotation domain
22- A SAR-based index for landscape changes in African savannas
23- Semi-automated surface water detection with Synthetic Aperture Radar Data: A wetland case study
24- Coherence change-detection with Sentinel-1 for natural and anthropogenic disaster
monitoring in urban areas
25- Multi-layer model based on multi-scale and multi-feature fusion for SAR images
26- L-Band temporal coherence assessment and modeling using amplitude and snow depth
over interior AlaskaNuméro de notice : 28510 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Monographie DOI : 10.3390/books978-3-03897-183-2 En ligne : https://doi.org/10.3390/books978-3-03897-183-2 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97066 Potential and limits of Sentinel-1 data for small alpine glaciers monitoring / Matthias Jauvin (2018)
Titre : Potential and limits of Sentinel-1 data for small alpine glaciers monitoring Type de document : Article/Communication Auteurs : Matthias Jauvin, Auteur ; Yajing Yan, Auteur ; Emmanuel Trouvé, Auteur ; Bénédicte Fruneau , Auteur Editeur : New York : Institute of Electrical and Electronics Engineers IEEE Année de publication : 2018 Projets : 2-Pas d'info accessible - article non ouvert / Conférence : IGARSS 2018, IEEE International Geoscience And Remote Sensing Symposium, observing, understanding and forecasting the dynamics of our planet 22/07/2018 27/07/2018 Valencia Espagne Proceedings IEEE Importance : pp 5169 - 5172 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] Alpes (France)
[Termes IGN] analyse diachronique
[Termes IGN] Chamonix
[Termes IGN] glacier
[Termes IGN] image ERS-SAR
[Termes IGN] image Sentinel-SAR
[Termes IGN] image TanDEM-X
[Termes IGN] interferométrie différentielle
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] Mont-Blanc, massif du
[Termes IGN] surveillance hydrologiqueRésumé : (auteur) In this paper, we present new results of the use of Sentinel-1 data to monitor Alpine glacier displacement by SAR differential interferometry (D-InSAR) in Chamonix-Mont-Blanc Valley. Two time series of Sentinel-1 A/B images acquired from October 2016 to early April 2017 (including 31 ascending and 25 descending acquisitions) are used to form 6-day interferograms and to evaluate their potential for displacement measurements over small fast moving Alpine glaciers. Results show that, even at low latitudes as in the French Alps, fringe patterns can be observed over the glaciers during the cold season with favorable anti-cyclonic meteorological conditions. Different processing steps to derive final displacement fields are presented and discussed and the results are compared with ERS-Tandem results obtained on the same glaciers in winter 1996. Numéro de notice : C2018-059 Affiliation des auteurs : UPEM-LASTIG+Ext (2016-2019) Thématique : IMAGERIE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.1109/IGARSS.2018.8519231 Date de publication en ligne : 05/11/2018 En ligne : https://doi.org/10.1109/IGARSS.2018.8519231 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91375 An unsupervised two-stage clustering approach for forest structure classification based on X-band InSAR data — A case study in complex temperate forest stands / Sahra Abdullahi in International journal of applied Earth observation and geoinformation, vol 57 (May 2017)
[article]
Titre : An unsupervised two-stage clustering approach for forest structure classification based on X-band InSAR data — A case study in complex temperate forest stands Type de document : Article/Communication Auteurs : Sahra Abdullahi, Auteur ; Mathias Schardt, Auteur ; Hans Pretzsch, Auteur Année de publication : 2017 Article en page(s) : pp 36 - 48 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] bande X
[Termes IGN] Bavière (Allemagne)
[Termes IGN] carte de Kohonen
[Termes IGN] classification barycentrique
[Termes IGN] classification non dirigée
[Termes IGN] distance euclidienne
[Termes IGN] forêt tempérée
[Termes IGN] image radar moirée
[Termes IGN] image TanDEM-X
[Termes IGN] image TerraSAR-X
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] structure d'un peuplement forestierRésumé : (auteur) Forest structure at stand level plays a key role for sustainable forest management, since the biodiversity, productivity, growth and stability of the forest can be positively influenced by managing its structural diversity. In contrast to field-based measurements, remote sensing techniques offer a cost-efficient opportunity to collect area-wide information about forest stand structure with high spatial and temporal resolution. Especially Interferometric Synthetic Aperture Radar (InSAR), which facilitates worldwide acquisition of 3d information independent from weather conditions and illumination, is convenient to capture forest stand structure. This study purposes an unsupervised two-stage clustering approach for forest structure classification based on height information derived from interferometric X-band SAR data which was performed in complex temperate forest stands of Traunstein forest (South Germany). In particular, a four dimensional input data set composed of first-order height statistics was non-linearly projected on a two-dimensional Self-Organizing Map, spatially ordered according to similarity (based on the Euclidean distance) in the first stage and classified using the k-means algorithm in the second stage. The study demonstrated that X-band InSAR data exhibits considerable capabilities for forest structure classification. Moreover, the unsupervised classification approach achieved meaningful and reasonable results by means of comparison to aerial imagery and LiDAR data. Numéro de notice : A2017-368 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.jag.2016.12.010 En ligne : https://doi.org/10.1016/j.jag.2016.12.010 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=85785
in International journal of applied Earth observation and geoinformation > vol 57 (May 2017) . - pp 36 - 48[article]Stochastic geometrical model and Monte Carlo optimization methods for building reconstruction from InSAR data / Yue Zhang in ISPRS Journal of photogrammetry and remote sensing, vol 108 (October 2015)PermalinkEstimation of forest biomass from two-level model inversion of single-pass InSAR data / M.J. Soja in IEEE Transactions on geoscience and remote sensing, vol 53 n° 9 (September 2015)PermalinkNormalization of TanDEM-X DSM data in urban environments with morphological filters / Christian Geiss in IEEE Transactions on geoscience and remote sensing, vol 53 n° 8 (August 2015)PermalinkTemporal stability of X-band single-pass InSAR heights in a spruce forest: effects of acquisition properties and season / Svein Solberg in IEEE Transactions on geoscience and remote sensing, vol 53 n° 3 (March 2015)PermalinkTanDEM-X Pol-InSAR performance for forest height estimation / Florian Kugler in IEEE Transactions on geoscience and remote sensing, vol 52 n° 10 tome 1 (October 2014)PermalinkSAR image categorization with log cumulants of the fractional Fourier transform coefficients / Jagmal Singh in IEEE Transactions on geoscience and remote sensing, vol 51 n° 12 (December 2013)PermalinkAn advanced algorithm for deformation estimation in non-urban areas / K. Goel in ISPRS Journal of photogrammetry and remote sensing, vol 73 (September 2012)PermalinkBistatic system and baseline calibration in TanDEM-X to ensure the global digital elevation model quality / J. Hueso Gonzales in ISPRS Journal of photogrammetry and remote sensing, vol 73 (September 2012)PermalinkCoherence evaluation of TanDEM-X interferometric data / M. Martone in ISPRS Journal of photogrammetry and remote sensing, vol 73 (September 2012)Permalinkvol 73 - September 2012 - Innovative applications of SAR interferometry from modern satellite sensors (Bulletin de ISPRS Journal of photogrammetry and remote sensing) / U. SoergerlPermalink