Descripteur
Documents disponibles dans cette catégorie (481)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
FORMS: Forest Multiple Source height, wood volume, and biomass maps in France at 10 to 30 m resolution based on Sentinel-1, Sentinel-2, and GEDI data with a deep learning approach / Martin Schwartz in Earth System Science Data, vol 15 n° inconnu (2023)
[article]
Titre : FORMS: Forest Multiple Source height, wood volume, and biomass maps in France at 10 to 30 m resolution based on Sentinel-1, Sentinel-2, and GEDI data with a deep learning approach Type de document : Article/Communication Auteurs : Martin Schwartz, Auteur ; Philippe Ciais, Auteur ; Aurélien de Truchis, Auteur ; Jérôme Chave, Auteur ; Catherine Ottle, Auteur ; Cédric Vega , Auteur ; Jean-Pierre Wigneron, Auteur ; et al., Auteur Année de publication : 2023 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] apprentissage profond
[Termes IGN] biomasse aérienne
[Termes IGN] données allométriques
[Termes IGN] Global Ecosystem Dynamics Investigation lidar
[Termes IGN] hauteur des arbres
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] inventaire forestier national (données France)
[Termes IGN] modèle numérique de surface de la canopée
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) The contribution of forests to carbon storage and biodiversity conservation highlights the need for accurate forest height and biomass mapping and monitoring. In France, forests are managed mainly by private owners and divided into small stands, requiring 10 to 50 m spatial resolution data to be correctly separated. Further, 35 % of the French forest territory is covered by mountains and Mediterranean forests which are managed very extensively. In this work, we used a deep-learning model based on multi-stream remote sensing measurements (NASA’s GEDI LiDAR mission and ESA’s Copernicus Sentinel 1 & 2 satellites) to create a 10 m resolution canopy height map of France for 2020 (FORMS-H). In a second step, with allometric equations fitted to the French National Forest Inventory (NFI) plot data, we created a 30 m resolution above-ground biomass density (AGBD) map (Mg ha-1) of France (FORMS-B). Extensive validation was conducted. First, independent datasets from Airborne Laser Scanning (ALS) and NFI data from thousands of plots reveal a mean absolute error (MAE) of 2.94 m for FORMS-H, which outperforms existing canopy height models. Second, FORMS-B was validated using two independent forest inventory datasets from the Renecofor permanent forest plot network and from the GLORIE forest inventory with MAE of 59.6 Mg ha-1 and 19.6 Mg.ha-1 respectively, providing greater performance than other AGBD products sampled over France. These results highlight the importance of coupling remote sensing technologies with recent advances in computer science to bring material insights to climate-efficient forest management policies. Additionally, our approach is based on open-access data having global coverage and a high spatial and temporal resolution, making the maps reproducible and easily scalable. FORMS products can be accessed from https://doi.org/10.5281/zenodo.7840108 (Schwartz et al., 2023). Numéro de notice : A2023-179 Affiliation des auteurs : LIF+Ext (2020- ) Thématique : FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.5194/essd-2023-196 En ligne : https://doi.org/10.5194/essd-2023-196 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103341
in Earth System Science Data > vol 15 n° inconnu (2023)[article]Evaluating TROPOMI and MODIS performance to capture the dynamic of air pollution in São Paulo state: A case study during the COVID-19 outbreak / A.P. Rudke in Remote sensing of environment, vol 289 (May 2003)
[article]
Titre : Evaluating TROPOMI and MODIS performance to capture the dynamic of air pollution in São Paulo state: A case study during the COVID-19 outbreak Type de document : Article/Communication Auteurs : A.P. Rudke, Auteur ; J.A. Martins, Auteur ; R. Hallak, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 113514 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] correction atmosphérique
[Termes IGN] dioxyde d'azote
[Termes IGN] épidémie
[Termes IGN] image Sentinel-5P-TROPOMI
[Termes IGN] image Terra-MODIS
[Termes IGN] pollution atmosphérique
[Termes IGN] qualité de l'air
[Termes IGN] Sao PauloRésumé : (auteur) Atmospheric pollutant data retrieved through satellite sensors are continually used to assess changes in air quality in the lower atmosphere. During the COVID-19 pandemic, several studies started to use satellite measurements to evaluate changes in air quality in many different regions worldwide. However, although satellite data is continuously validated, it is known that its accuracy may vary between monitored areas, requiring regionalized quality assessments. Thus, this study aimed to evaluate whether satellites could measure changes in the air quality of the state of São Paulo, Brazil, during the COVID-19 outbreak; and to verify the relationship between satellite-based data [Tropospheric NO2 column density and Aerosol Optical Depth (AOD)] and ground-based concentrations [NO2 and particulate material (PM; coarse: PM10 and fine: PM2.5)]. For this purpose, tropospheric NO2 obtained from the TROPOMI sensor and AOD retrieved from MODIS sensor data by using the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm were compared with concentrations obtained from 50 automatic ground monitoring stations. The results showed low correlations between PM and AOD. For PM10, most stations showed correlations lower than 0.2, which were not significant. The results for PM2.5 were similar, but some stations showed good correlations for specific periods (before or during the COVID-19 outbreak). Satellite-based Tropospheric NO2 proved to be a good predictor for NO2 concentrations at ground level. Considering all stations with NO2 measurements, correlations >0.6 were observed, reaching 0.8 for specific stations and periods. In general, it was observed that regions with a more industrialized profile had the best correlations, in contrast with rural areas. In addition, it was observed about 57% reductions in tropospheric NO2 throughout the state of São Paulo during the COVID-19 outbreak. Variations in air pollutants were linked to the region economic vocation, since there were reductions in industrialized areas (at least 50% of the industrialized areas showed >20% decrease in NO2) and increases in areas with farming and livestock characteristics (about 70% of those areas showed increase in NO2). Our results demonstrate that Tropospheric NO2 column densities can serve as good predictors of NO2 concentrations at ground level. For MAIAC-AOD, a weak relationship was observed, requiring the evaluation of other possible predictors to describe the relationship with PM. Thus, it is concluded that regionalized assessment of satellite data accuracy is essential for assertive estimates on a regional/local level. Good quality information retrieved at specific polluted areas does not assure a worldwide use of remote sensor data. Numéro de notice : A2023-170 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.rse.2023.113514 Date de publication en ligne : 21/02/2023 En ligne : https://doi.org/10.1016/j.rse.2023.113514 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102930
in Remote sensing of environment > vol 289 (May 2003) . - n° 113514[article]Improved parametrisation of a physically-based forest reflectance model for retrieval of boreal forest structural properties / Eelis Halme in Silva fennica, vol 57 n° 2 (April 2023)
[article]
Titre : Improved parametrisation of a physically-based forest reflectance model for retrieval of boreal forest structural properties Type de document : Article/Communication Auteurs : Eelis Halme, Auteur ; Matti Mõttus, Auteur Année de publication : 2023 Article en page(s) : n° 22028 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Betula pendula
[Termes IGN] betula pubescens
[Termes IGN] densité du peuplement
[Termes IGN] diagnostic foliaire
[Termes IGN] Finlande
[Termes IGN] forêt boréale
[Termes IGN] image Sentinel-MSI
[Termes IGN] modèle de croissance végétale
[Termes IGN] Picea abies
[Termes IGN] Pinus sylvestris
[Termes IGN] réflectance végétale
[Termes IGN] structure d'un peuplement forestierRésumé : (auteur) Physically-based reflectance models offer a robust and transferable method to assess biophysical characteristics of vegetation in remote sensing. Forests exhibit explicit structure at many scales, from shoots and branches to landscape patches, and hence present a specific challenge to vegetation reflectance modellers. To relate forest reflectance with its structure, the complexity must be parametrised leading to an increase in the number of reflectance model inputs. The parametrisations link reflectance simulations to measurable forest variables, but at the same time rely on abstractions (e.g. a geometric surface forming a tree crown) and physically-based simplifications that are difficult to quantify robustly. As high-quality data on basic forest structure (e.g. tree height and stand density) and optical properties (e.g. leaf and forest floor reflectance) are becoming increasingly available, we used the well-validated forest reflectance and transmittance model FRT to investigate the effect of the values of the “uncertain” input parameters on the accuracy of modelled forest reflectance. With the state-of-the-art structural and spectral forest information, and Sentinel-2 Multispectral Instrument imagery, we identified that the input parameters influencing the most the modelled reflectance, given that the basic forestry variables are set to their true values and leaf mass is determined from reliable allometric models, are the regularity of the tree distribution and the amount of woody elements. When these parameters were set to their new adjusted values, the model performance improved considerably, reaching in the near infrared spectral region (740–950 nm) nearly zero bias, a relative RMSE of 13% and a correlation coefficient of 0.81. In the visible part of the spectrum, the model performance was not as consistent indicating room for improvement. Numéro de notice : A2023-228 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.14214/sf.22028 Date de publication en ligne : 30/05/2023 En ligne : https://doi.org/10.14214/sf.22028 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103260
in Silva fennica > vol 57 n° 2 (April 2023) . - n° 22028[article]The potential of combining satellite and airborne remote sensing data for habitat classification and monitoring in forest landscapes / Anna Iglseder in International journal of applied Earth observation and geoinformation, vol 117 (March 2023)
[article]
Titre : The potential of combining satellite and airborne remote sensing data for habitat classification and monitoring in forest landscapes Type de document : Article/Communication Auteurs : Anna Iglseder, Auteur ; Markus Immitzer, Auteur ; Alena Dostalova, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 103131 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] carte thématique
[Termes IGN] cartographie écologique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données Copernicus
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] forêt
[Termes IGN] habitat (nature)
[Termes IGN] habitat forestier
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] modèle numérique de surface
[Termes IGN] protection de la biodiversité
[Termes IGN] site Natura 2000
[Termes IGN] Vienne (capitale Autriche)Résumé : (auteur) Mapping and monitoring of habitats are requirements for protecting biodiversity. In this study, we investigated the benefit of combining airborne (laser scanning, image-based point clouds) and satellite-based (Sentinel 1 and 2) data for habitat classification. We used a two level random forest 10-fold leave-location-out cross-validation workflow to model Natura 2000 forest and grassland habitat types on a 10 m pixel scale at two study sites in Vienna, Austria. We showed that models using combined airborne and satellite-based remote sensing data perform significantly better for forests than airborne or satellite-based data alone. For frequently occurring classes, we reached class accuracies with F1-scores from 0.60 to 0.87. We identified clear difficulties of correctly assigning rare classes with model-based classification. Finally, we demonstrated the potential of the workflow to identify errors in reference data and point to the opportunities for integration in habitat mapping and monitoring. Numéro de notice : A2023-128 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.103131 Date de publication en ligne : 12/01/2023 En ligne : https://doi.org/10.1016/j.jag.2022.103131 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102512
in International journal of applied Earth observation and geoinformation > vol 117 (March 2023) . - n° 103131[article]Generating Sentinel-2 all-band 10-m data by sharpening 20/60-m bands: A hierarchical fusion network / Jingan Wu in ISPRS Journal of photogrammetry and remote sensing, vol 196 (February 2023)
[article]
Titre : Generating Sentinel-2 all-band 10-m data by sharpening 20/60-m bands: A hierarchical fusion network Type de document : Article/Communication Auteurs : Jingan Wu, Auteur ; Liupeng Lin, Auteur ; Chi Zhang, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 16 - 31 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] affinage d'image
[Termes IGN] approche hiérarchique
[Termes IGN] bande spectrale
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] filtre passe-haut
[Termes IGN] fusion d'images
[Termes IGN] image à haute résolution
[Termes IGN] image Sentinel-MSIRésumé : (Auteur) Earth observations from the Sentinel-2 mission have been extensively accepted in a variety of land services. The thirteen spectral bands of Sentinel-2, however, are collected at three spatial resolutions of 10/20/60 m, and such a difference brings difficulties to analyze multispectral imagery at a uniform resolution. To address this problem, we developed a hierarchical fusion network (HFN) to sharpen 20/60-m bands and generate Sentinel-2 all-band 10-m data. The deep learning architecture is used to learn the complex mapping between multi-resolution input and output data. Given the deficiency of previous studies in which the spatial information is inferred only from the fine-resolution bands, the proposed hierarchical fusion framework simultaneously leverages the self-similarity information from coarse-resolution bands and the spatial structure information from fine-resolution bands, to enhance the sharpening performance. Technically, the coarse-resolution bands are super-resolved by exploiting the information from themselves and then sharpened by fusing with the fine-resolution bands. Both 20-m and 60-m bands can be sharpened via the developed approach. Experimental results regarding visual comparison and quantitative assessment demonstrate that HFN outperforms the other benchmarking models, including pan-sharpening-based, model-based, geostatistical-based, and other deep-learning-based approaches, showing remarkable performance in reproducing explicit spatial details and maintaining original spectral features. Moreover, the developed model works more effectively than the other models over the heterogeneous landscape, which is usually considered a challenging application scenario. To sum up, the fusion model can sharpen Sentinel-2 20/60-m bands, and the created all-band 10-m data allows image analysis and geoscience applications to be authentically carried out at the 10-m resolution. Numéro de notice : A2023-063 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.12.017 Date de publication en ligne : 01/01/2023 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.12.017 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102392
in ISPRS Journal of photogrammetry and remote sensing > vol 196 (February 2023) . - pp 16 - 31[article]Large-scale burn severity mapping in multispectral imagery using deep semantic segmentation models / Xikun Hu in ISPRS Journal of photogrammetry and remote sensing, vol 196 (February 2023)PermalinkDecision tree-based machine learning models for above-ground biomass estimation using multi-source remote sensing data and object-based image analysis / Haifa Tamiminia in Geocarto international, vol 38 n° inconnu ([01/01/2023])PermalinkEstimating mangrove above-ground biomass at Maowei Sea, Beibu Gulf of China using machine learning algorithm with Sentinel-1 and Sentinel-2 data / Zhuomei Huang in Geocarto international, vol 38 n° inconnu ([01/01/2023])PermalinkHow to optimize the 2D/3D urban thermal environment: Insights derived from UAV LiDAR/multispectral data and multi-source remote sensing data / Rongfang Lyu in Sustainable Cities and Society, vol 88 (January 2023)PermalinkMachine learning remote sensing using the random forest classifier to detect the building damage caused by the Anak Krakatau Volcano tsunami / Riantini Virtriana in Geomatics, Natural Hazards and Risk, vol 14 n° 1 (2023)PermalinkMapping active paddy rice area over monsoon asia using time-series Sentinel-2 images in Google earth engine : a case study over lower gangetic plain / Arabinda Maiti in Geocarto international, vol 38 n° inconnu ([01/01/2023])PermalinkA new strategy for improving the accuracy of forest aboveground biomass estimates in an alpine region based on multi-source remote sensing / Yali Zhang in GIScience and remote sensing, vol 60 n° 1 (2023)PermalinkRemote sensing techniques for water management and climate change monitoring in drought areas: case studies in Egypt and Tunisia / Lifan Ji in European journal of remote sensing, vol 56 n° 1 (2023)PermalinkA simple approach to enhance the TROPOMI solar-induced chlorophyll fluorescence product by combining with canopy reflected radiation at near-infrared band / Xinjie Liu in Remote sensing of environment, vol 284 (January 2023)PermalinkUsing Google Earth Engine to classify unique forest and agroforest classes using a mix of Sentinel 2a spectral data and topographical features: a Sri Lanka case study / W.D.K.V. Nandasena in Geocarto international, vol 38 n° inconnu ([01/01/2023])Permalink