Descripteur
Termes IGN > imagerie > image spatiale > image satellite > image Worldview
image WorldviewVoir aussi |
Documents disponibles dans cette catégorie (97)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Machine learning remote sensing using the random forest classifier to detect the building damage caused by the Anak Krakatau Volcano tsunami / Riantini Virtriana in Geomatics, Natural Hazards and Risk, vol 14 n° 1 (2023)
[article]
Titre : Machine learning remote sensing using the random forest classifier to detect the building damage caused by the Anak Krakatau Volcano tsunami Type de document : Article/Communication Auteurs : Riantini Virtriana, Auteur ; Agung Budi Harto, Auteur ; Fiza Wira Atmaja, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 28 - 51 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage automatique
[Termes IGN] base de données d'images
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] dommage matériel
[Termes IGN] données Copernicus
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Worldview
[Termes IGN] Indonésie
[Termes IGN] modèle numérique de surface
[Termes IGN] segmentation d'image
[Termes IGN] tsunamiRésumé : (auteur) In Indonesia, tsunamis are frequent events. In 2000–2016, there were 44 tsunami events in Indonesia, with financial losses reaching 43.38 trillion. In 2018, a tsunami occurred in the Sunda Strait due to the eruption of the Anak Krakatau Volcano, which caused many fatalities and much building damage. This study aimed to detect the building damage in the Labuan District, Banten Province. Machine learning methods were used to detect building damage using random forest with object-based techniques. No previous research has combined selected predictors into scenarios; hence, the novelty of this study is combining various random forest predictors to identify the extent of building damage using 14 predictor scenarios. In addition, field surveys were conducted two years and nine months after the tsunami to observe the changes and efforts made. The results of the random forest classification were validated and compared with three datasets, namely xBD, Copernicus, and field survey data. The results of this study can help classify the level of building damage using satellite imagery to improve mitigation in tsunami-prone areas. Numéro de notice : A2023-037 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/19475705.2022.2147455 Date de publication en ligne : 07/12/2022 En ligne : https://doi.org/10.1080/19475705.2022.2147455 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102307
in Geomatics, Natural Hazards and Risk > vol 14 n° 1 (2023) . - pp 28 - 51[article]Deep learning detects invasive plant species across complex landscapes using Worldview-2 and Planetscope satellite imagery / Thomas A. Lake in Remote sensing in ecology and conservation, vol 8 n° 6 (December 2022)
[article]
Titre : Deep learning detects invasive plant species across complex landscapes using Worldview-2 and Planetscope satellite imagery Type de document : Article/Communication Auteurs : Thomas A. Lake, Auteur ; Ryan D. Briscoe Runquist, Auteur ; David A. Moeller, Auteur Année de publication : 2022 Article en page(s) : pp 875 - 889 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] carte d'occupation du sol
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par réseau neuronal récurrent
[Termes IGN] espèce exotique envahissante
[Termes IGN] image Worldview
[Termes IGN] PlanetScope
[Termes IGN] série temporelleRésumé : (auteur) Effective management of invasive species requires rapid detection and dynamic monitoring. Remote sensing offers an efficient alternative to field surveys for invasive plants; however, distinguishing individual plant species can be challenging especially over geographic scales. Satellite imagery is the most practical source of data for developing predictive models over landscapes, but spatial resolution and spectral information can be limiting. We used two types of satellite imagery to detect the invasive plant, leafy spurge (Euphorbia virgata), across a heterogeneous landscape in Minnesota, USA. We developed convolutional neural networks (CNNs) with imagery from Worldview-2 and Planetscope satellites. Worldview-2 imagery has high spatial and spectral resolution, but images are not routinely taken in space or time. By contrast, Planetscope imagery has lower spatial and spectral resolution, but images are taken daily across Earth. The former had 96.1% accuracy in detecting leafy spurge, whereas the latter had 89.9% accuracy. Second, we modified the CNN for Planetscope with a long short-term memory (LSTM) layer that leverages information on phenology from a time series of images. The detection accuracy of the Planetscope LSTM model was 96.3%, on par with the high resolution, Worldview-2 model. Across models, most false-positive errors occurred near true populations, indicating that these errors are not consequential for management. We identified that early and mid-season phenological periods in the Planetscope time series were key to predicting leafy spurge. Additionally, green, red-edge and near-infrared spectral bands were important for differentiating leafy spurge from other vegetation. These findings suggest that deep learning models can accurately identify individual species over complex landscapes even with satellite imagery of modest spatial and spectral resolution if a temporal series of images is incorporated. Our results will help inform future management efforts using remote sensing to identify invasive plants, especially across large-scale, remote and data-sparse areas. Numéro de notice : A2023-033 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1002/rse2.288 En ligne : https://doi.org/10.1002/rse2.288 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102295
in Remote sensing in ecology and conservation > vol 8 n° 6 (December 2022) . - pp 875 - 889[article]Discriminating pure Tamarix species and their putative hybrids using field spectrometer / Solomon G. Tesfamichael in Geocarto international, vol 37 n° 25 ([01/12/2022])
[article]
Titre : Discriminating pure Tamarix species and their putative hybrids using field spectrometer Type de document : Article/Communication Auteurs : Solomon G. Tesfamichael, Auteur ; Solomon W. Newete, Auteur ; Elhadi Adam, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 7733 - 7752 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] Afrique du sud (état)
[Termes IGN] apprentissage automatique
[Termes IGN] canopée
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] espèce exotique envahissante
[Termes IGN] essence indigène
[Termes IGN] Extreme Gradient Machine
[Termes IGN] feuille (végétation)
[Termes IGN] image Landsat-8
[Termes IGN] image Sentinel-MSI
[Termes IGN] image SPOT 6
[Termes IGN] image Worldview
[Termes IGN] spectroradiomètre
[Termes IGN] Tamarix (genre)Résumé : (auteur) South Africa is home to a native Tamarix species, while two were introduced in the early 1900s to mitigate the effects of mining on soil. The introduced species have spread to other ecosystems resulting in ecological deteriorations. The problem is compounded by hybridization of the species making identification between the native and exotic species difficult. This study investigated the potential of remote sensing in identifying native, non-native and hybrid Tamarix species recorded in South Africa. Leaf- and canopy-level classifications of the species were conducted using field spectroradiometer data that provided two inputs: original hyperspectral data and bands simulated according to Landsat-8, Sentinel-2, SPOT-6 and WorldView-3. The original hyperspectral data yielded high accuracies for leaf- and plot-level discriminations (>90%), while promising accuracies were also obtained using Landsat-8, Sentinel-2 and Worldview-3 simulations (>75%). These findings encourage for investigating the performance of actual space-borne multispectral data in classifying the species. Numéro de notice : A2022-928 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/10106049.2021.1983033 Date de publication en ligne : 27/09/2021 En ligne : https://doi.org/10.1080/10106049.2021.1983033 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102661
in Geocarto international > vol 37 n° 25 [01/12/2022] . - pp 7733 - 7752[article]Research on automatic identification method of terraces on the Loess plateau based on deep transfer learning / Mingge Yu in Remote sensing, vol 14 n° 10 (May-2 2022)
[article]
Titre : Research on automatic identification method of terraces on the Loess plateau based on deep transfer learning Type de document : Article/Communication Auteurs : Mingge Yu, Auteur ; Xiaoping Rui, Auteur ; Weiyi Xie, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 2446 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] Chine
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection automatique
[Termes IGN] échantillonnage
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image à haute résolution
[Termes IGN] image panchromatique
[Termes IGN] image Worldview
[Termes IGN] modèle de simulation
[Termes IGN] surface cultivée
[Termes IGN] terrasseRésumé : (auteur) Rapid, accurate extraction of terraces from high-resolution images is of great significance for promoting the application of remote-sensing information in soil and water conservation planning and monitoring. To solve the problem of how deep learning requires a large number of labeled samples to achieve good accuracy, this article proposes an automatic identification method for terraces that can obtain high precision through small sample datasets. Firstly, a terrace identification source model adapted to multiple data sources is trained based on the WorldView-1 dataset. The model can be migrated to other types of images for terracing extraction as a pre-trained model. Secondly, to solve the small sample problem, a deep transfer learning method for accurate pixel-level extraction of high-resolution remote-sensing image terraces is proposed. Finally, to solve the problem of insufficient boundary information and splicing traces during prediction, a strategy of ignoring edges is proposed, and a prediction model is constructed to further improve the accuracy of terrace identification. In this paper, three regions outside the sample area are randomly selected, and the OA, F1 score, and MIoU averages reach 93.12%, 91.40%, and 89.90%, respectively. The experimental results show that this method, based on deep transfer learning, can accurately extract terraced field surfaces and segment terraced field boundaries. Numéro de notice : A2022-402 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs14102446 Date de publication en ligne : 19/05/2022 En ligne : https://doi.org/10.3390/rs14102446 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100705
in Remote sensing > vol 14 n° 10 (May-2 2022) . - n° 2446[article]Extraction from high-resolution remote sensing images based on multi-scale segmentation and case-based reasoning / Jun Xu in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 3 (March 2022)
[article]
Titre : Extraction from high-resolution remote sensing images based on multi-scale segmentation and case-based reasoning Type de document : Article/Communication Auteurs : Jun Xu, Auteur ; Jiasong Li, Auteur ; Hao Peng, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 199 - 205 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] analyse d'image orientée objet
[Termes IGN] classification barycentrique
[Termes IGN] distance de Kullback-Leibler
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image à haute résolution
[Termes IGN] image Worldview
[Termes IGN] masque
[Termes IGN] occupation du sol
[Termes IGN] segmentation d'image
[Termes IGN] segmentation multi-échelle
[Termes IGN] séparateur à vaste margeRésumé : (auteur) In object-oriented information extraction from high-resolution remote sensing images, the segmentation and classification of images involves considerable manual participation, which limits the development of automation and intelligence for these purposes. Based on the multi-scale segmentation strategy and case-based reasoning, a new method for extracting high-resolution remote sensing image information by fully using the image and nonimage features of the case object is proposed. Feature selection and weight learning are used to construct a multi-level and multi-layer case library model of surface cover classification reasoning. Combined with image mask technology, this method is applied to extract surface cover classification information from remote sensing images using different sensors, time, and regions. Finally, through evaluation of the extraction and recognition rates, the accuracy and effectiveness of this method was verified. Numéro de notice : A2022-202 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.20-00104R3 Date de publication en ligne : 01/03/2022 En ligne : https://doi.org/10.14358/PERS.20-00104R3 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100006
in Photogrammetric Engineering & Remote Sensing, PERS > vol 88 n° 3 (March 2022) . - pp 199 - 205[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2022031 SL Revue Centre de documentation Revues en salle Disponible Synergistic use of particle swarm optimization, artificial neural network, and extreme gradient boosting algorithms for urban LULC mapping from WorldView-3 images / Alireza Hamedianfar in Geocarto international, vol 37 n° 3 ([01/02/2022])PermalinkSemantic segmentation of land cover from high resolution multispectral satellite images by spectral-spatial convolutional neural network / Ekrem Saralioglu in Geocarto international, vol 37 n° 2 ([15/01/2022])PermalinkPermalinkImplementation of the log-transformed band ratio algorithm on images of WorldView-3 and Sentinel-2 for bathymetry mapping of a pocket beach of Malta / Antoine Cornu (2022)PermalinkAutomatic tuning of segmentation parameters for tree crown delineation with VHR imagery / Camile Sothe in Geocarto international, vol 36 n° 19 ([01/11/2021])PermalinkA novel method based on deep learning, GIS and geomatics software for building a 3D city model from VHR satellite stereo imagery / Massimiliano Pepe in ISPRS International journal of geo-information, vol 10 n° 10 (October 2021)PermalinkClassification of tree species in a heterogeneous urban environment using object-based ensemble analysis and World View-2 satellite imagery / Simbarashe Jombo in Applied geomatics, vol 13 n° 3 (September 2021)PermalinkProtection naturelle contre la submersion, apport de l'intelligence artificielle / Antoine Mury in Cartes & Géomatique, n° 245-246 (septembre - décembre 2021)PermalinkThe real potential of current passive satellite data to map aboveground biomass in tropical forests / Nidhi Jha in Remote sensing in ecology and conservation, vol 7 n° 3 (September 2021)PermalinkComparison of classification methods for urban green space extraction using very high resolution worldview-3 imagery / S. Vigneshwaran in Geocarto international, vol 36 n° 13 ([15/07/2021])Permalink