Descripteur
Termes IGN > informatique > implémentation (informatique)
implémentation (informatique)Synonyme(s)mise en oeuvre (d'un système) |
Documents disponibles dans cette catégorie (233)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
The limits of GIS implementation in education: A systematic review / Veronika Bernhäuserová in ISPRS International journal of geo-information, vol 11 n° 12 (December 2022)
[article]
Titre : The limits of GIS implementation in education: A systematic review Type de document : Article/Communication Auteurs : Veronika Bernhäuserová, Auteur ; Lenka Havelková, Auteur ; Kateřina Hátlová, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 592 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Systèmes d'information géographique
[Termes IGN] apprentissage (cognition)
[Termes IGN] formation
[Termes IGN] géographie
[Termes IGN] géomatique
[Termes IGN] implémentation (informatique)
[Termes IGN] système d'information géographique
[Termes IGN] terminologieRésumé : (auteur) Despite the extensive discussion on the educational potential of GIS and the changes made in the curricula in many countries, the implementation of GIS in classrooms has still been relatively slow. This is because of variables limiting the process of GIS implementation in lessons. Although research into the limits of GIS implementation has been carried out quite extensively, there is a need for knowledge systematisation in the field. Therefore, the presented systematic review of 34 empirical studies addresses this need and pays attention to the methodological approaches used to research the limits, the identified limits of GIS implementation, their categorisation, and any temporal trends in their occurrence. Altogether, the analysed studies identified 68 limits of GIS implementation in education using mainly quantitative methodology (especially the questionnaire), with utmost attention paid to teachers as participants. These limits then formed complex categorisation that distinguishes elementarily between the limits related to humans and resources. The most frequent and variable category of limits was teachers followed by technology, while both kept their positions in all periods. The systematisation of the research enables the formulation of implications for educational and geoinformatics practice and recommendations for future research. Numéro de notice : A2022-875 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.3390/ijgi11120592 Date de publication en ligne : 26/11/2022 En ligne : https://doi.org/10.3390/ijgi11120592 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102174
in ISPRS International journal of geo-information > vol 11 n° 12 (December 2022) . - n° 592[article]Structured binary neural networks for image recognition / Bohan Zhuang in International journal of computer vision, vol 130 n° 9 (September 2022)
[article]
Titre : Structured binary neural networks for image recognition Type de document : Article/Communication Auteurs : Bohan Zhuang, Auteur ; Chunhua Shen, Auteur ; Mingkui Tan, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 2081 - 2102 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] décomposition
[Termes IGN] détection d'objet
[Termes IGN] implémentation (informatique)
[Termes IGN] logique binaire
[Termes IGN] segmentation sémantiqueRésumé : (auteur) In this paper, we propose to train binarized convolutional neural networks (CNNs) that are of significant importance for deploying deep learning to mobile devices with limited power capacity and computing resources. Previous works on quantizing CNNs often seek to approximate the floating-point information of weights and/or activations using a set of discrete values. Such methods, termed value approximation here, typically are built on the same network architecture of the full-precision counterpart. Instead, we take a new “structured approximation” view for network quantization — it is possible and valuable to exploit flexible architecture transformation when learning low-bit networks, which can achieve even better performance than the original networks in some cases. In particular, we propose a “group decomposition” strategy, termed GroupNet, which divides a network into desired groups. Interestingly, with our GroupNet strategy, each full-precision group can be effectively reconstructed by aggregating a set of homogeneous binary branches. We also propose to learn effective connections among groups to improve the representation capability. To improve the model capacity, we propose to dynamically execute sparse binary branches conditioned on input features while preserving the computational cost. More importantly, the proposed GroupNet shows strong flexibility for a few vision tasks. For instance, we extend the GroupNet for accurate semantic segmentation by embedding the rich context into the binary structure. The proposed GroupNet also shows strong performance on object detection. Experiments on image classification, semantic segmentation, and object detection tasks demonstrate the superior performance of the proposed methods over various quantized networks in the literature. Moreover, the speedup and runtime memory cost evaluation comparing with related quantization strategies is analyzed on GPU platforms, which serves as a strong benchmark for further research. Numéro de notice : A2022-637 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s11263-022-01638-0 Date de publication en ligne : 22/06/2022 En ligne : https://doi.org/10.1007/s11263-022-01638-0 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101443
in International journal of computer vision > vol 130 n° 9 (September 2022) . - pp 2081 - 2102[article]Segmentation and sampling method for complex polyline generalization based on a generative adversarial network / Jiawei Du in Geocarto international, vol 37 n° 14 ([20/07/2022])
[article]
Titre : Segmentation and sampling method for complex polyline generalization based on a generative adversarial network Type de document : Article/Communication Auteurs : Jiawei Du ; Fang Wu, Auteur ; Ruixing Xing, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 4158 - 4180 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] échantillonnage de données
[Termes IGN] implémentation (informatique)
[Termes IGN] polyligne
[Termes IGN] rastérisation
[Termes IGN] réseau antagoniste génératif
[Termes IGN] segmentation
[Vedettes matières IGN] GénéralisationRésumé : (auteur) This paper focuses on learning complex polyline generalization. First, the requirements for sampled images to ensure the effective learning of complex polyline generalization are analysed. To meet these requirements, new methods for segmenting complex polylines and sampling images are proposed. Second, using the proposed segmentation and sampling method, a use case for the learning of complex polyline generalization using the generative adversarial network model, Pix2Pix, is developed. Third, this use case is applied experimentally for the complex generalization of coastline data from a scale of 1:50,000 to 1:250,000. Additionally, contrast experiments are conducted to compare the proposed segmentation and sampling method with object-based and traditional fixed-size methods. Experimental results show that the images generated using the proposed method are superior to the other two methods in the learning and application of complex polyline generalization. The results generalized for the developed use case are globally reasonable and suitably accurate. Numéro de notice : A2022-651 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/10106049.2021.1878288 Date de publication en ligne : 09/02/2021 En ligne : https://doi.org/10.1080/10106049.2021.1878288 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101473
in Geocarto international > vol 37 n° 14 [20/07/2022] . - pp 4158 - 4180[article]An algorithm to assist the robust filter for tightly coupled RTK/INS navigation system / Zun Niu in Remote sensing, vol 14 n° 10 (May-2 2022)
[article]
Titre : An algorithm to assist the robust filter for tightly coupled RTK/INS navigation system Type de document : Article/Communication Auteurs : Zun Niu, Auteur ; Guangchen Li, Auteur ; Fugui Guo, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 2449 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Navigation et positionnement
[Termes IGN] C++
[Termes IGN] centrale inertielle
[Termes IGN] erreur de positionnement
[Termes IGN] filtre de Kalman
[Termes IGN] implémentation (informatique)
[Termes IGN] matrice de covariance
[Termes IGN] positionnement cinématique en temps réel
[Termes IGN] précision du positionnement
[Termes IGN] rapport signal sur bruit
[Termes IGN] valeur aberranteRésumé : (auteur) The Real-Time Kinematic (RTK) positioning algorithm is a promising positioning technique that can provide real-time centimeter-level positioning precision in GNSS-friendly areas. However, the performance of RTK can degrade in GNSS-hostile areas like urban canyons. The surrounding buildings and trees can reflect and block the Global Navigation Satellite System (GNSS) signals, obstructing GNSS receivers’ ability to maintain signal tracking and exacerbating the multipath effect. A common method to assist RTK is to couple RTK with the Inertial Navigation System (INS). INS can provide accurate short-term relative positioning results. The Extended Kalman Filter (EKF) is usually used to couple RTK with INS, whereas the GNSS outlying observations significantly influence the performance. The Robust Kalman Filter (RKF) is developed to offer resilience against outliers. In this study, we design an algorithm to improve the traditional RKF. We begin by implementing the tightly coupled RTK/INS algorithm and the conventional RKF in C++. We also introduce our specific implementation in detail. Then, we test and analyze the performance of our codes on public datasets. Finally, we propose a novel algorithm to improve RKF and test the improvement. We introduce the Carrier-to-Noise Ratio (CNR) to help detect outliers that should be discarded. The results of the tests show that our new algorithm’s accuracy is improved when compared to the traditional RKF. We also open source the majority of our code, as we find there are few open-source projects for coupled RTK/INS in C++. Researchers can access the codes at our GitHub. Numéro de notice : A2022-401 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.3390/rs14102449 Date de publication en ligne : 20/05/2022 En ligne : https://doi.org/10.3390/rs14102449 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100704
in Remote sensing > vol 14 n° 10 (May-2 2022) . - n° 2449[article]An exact statistical method for analyzing co-location on a street network and its computational implementation / Wataru Morioka in International journal of geographical information science IJGIS, vol 36 n° 4 (April 2022)
[article]
Titre : An exact statistical method for analyzing co-location on a street network and its computational implementation Type de document : Article/Communication Auteurs : Wataru Morioka, Auteur ; Mei-Po Kwan, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 773 - 798 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] co-positionnement
[Termes IGN] distance euclidienne
[Termes IGN] fonction K de Ripley
[Termes IGN] implémentation (informatique)
[Termes IGN] méthode statistique
[Termes IGN] réseau routier
[Termes IGN] Tokyo (Japon)
[Termes IGN] zone tamponRésumé : (auteur) In many central districts in cities across the world, different types of stores form clusters resulting from the benefits of spatial agglomeration. To precisely analyze co-location relationships in a micro-scale space, this study develops a new statistical method by addressing the limitations of the ordinary cross K function method. The objectives of this paper are, first, to formulate an exact statistical method for analyzing co-location along streets in a central district constrained by a street network; second, to implement this statistical method in computational procedures. Third, this method is extended to the analysis of repulsive-location, i.e. phenomena of stores locating repulsively among different types of stores. Fourth, the paper shows a graph-theoretic diagram illustrating the spatial structure of stores in a central district consisting of bilateral, unilateral co-location and repulsive-location. Last, the proposed method is applied to eight different types of stores in a trendy district in Tokyo. The results show that the method is useful for revealing the spatial structure consisting of co-location and repulsive-location in the central district. Numéro de notice : A2022-257 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1976409 Date de publication en ligne : 16/09/2021 En ligne : https://doi.org/10.1080/13658816.2021.1976409 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100230
in International journal of geographical information science IJGIS > vol 36 n° 4 (April 2022) . - pp 773 - 798[article]ReBankment : un algorithme pour déplacer les talus sur les cartes par moindres carrés / Guillaume Touya in Cartes & Géomatique, n° 247-248 (mars-juin 2022)PermalinkSimulation d'ouragans et de collectes de déchets sur QGIS pour l'amélioration de la collecte des déchets post-ouragan / Quy Thy Truong in Cartes & Géomatique, n° 247-248 (mars-juin 2022)PermalinkFast local adaptive multiscale image matching algorithm for remote sensing image correlation / Niccolò Dematteis in Computers & geosciences, vol 159 (February 2022)PermalinkAdaptation of the standardized vegetation optical depth index for satellite-based soil moisture / Juliette Raabe (2022)PermalinkCIME: Context-aware geolocation of emergency-related posts / Gabriele Scalia in Geoinformatica, vol 26 n° 1 (January 2022)PermalinkCrossroadsDescriber, automatic textual description of OpenStreetMap intersections / Jérémy Kalsron (2022)PermalinkPermalinkImplementing a mass valuation application on interoperable land valuation data model designed as an extension of the national GDI / Arif Cagdas Aydinoglu in Survey review, Vol 53 n° 379 (July 2021)PermalinkGIS.LSP: A soft computing logic method and tool for geospatial suitability analysis / Shuoge Shen in Transactions in GIS, Vol 25 n° 3 (June 2021)PermalinkA Bayesian displacement field approach to accurate registration of SAR images / Mingtao Ding in Geocarto international, vol 36 n° 9 ([15/05/2021])Permalink