Descripteur
Documents disponibles dans cette catégorie (328)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Discrete element analysis of deformation features of slope controlled by karst fissures under the mining effect: a case study of Pusa landslide, China / Qian Zhao in Geomatics, Natural Hazards and Risk, vol 14 n° 1 (2023)
[article]
Titre : Discrete element analysis of deformation features of slope controlled by karst fissures under the mining effect: a case study of Pusa landslide, China Type de document : Article/Communication Auteurs : Qian Zhao, Auteur ; Zhongping Yang, Auteur ; Yuanwen Jiang, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 1 - 32 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] Chine
[Termes IGN] effondrement de terrain
[Termes IGN] faille géologique
[Termes IGN] géomorphologie locale
[Termes IGN] karst
[Termes IGN] pente
[Termes IGN] prospection minéraleRésumé : (auteur) Karst landforms are widely distributed in the southwestern mountain areas of China, and the continuous underground mining activities lead to frequent occurrence of catastrophic collapses and landslides. Revealing the relationship between the development characteristics of the controlling karst fissures and the slope deformation process is crucial to understand the collapse and landslide phenomena. The Pusa landslide is selected as the geological prototype of discrete element analysis, and the universal distinct element code (UDEC) is applied to simulate the overall deformation response of the mountain containing extensive karst fissure during the mining process. The results show that under the action of mining, the roof above the goaf bends and subsides, and the middle of the roof even breaks and collapses. The separation fractures effectively block the upward transmission of the collapse state of the rock stratum. The bottom of the karst fissure is susceptible to cracking first in the process of coal seam mining due to stress concentration, and the area of severe deformation in the slope coincides with the mining pressurization area. The morphology of the karst fissure controls and determines the deformation characteristics of the rock mass at the slope top, and only the karst fissure located within the mining influence range is the object to be considered in the slope stability analysis. The limit karst fracture depth, about 1/3 of the slope height, is the limit value to determine whether the rock mass at the slope top is toppled or slipped. The relationship between the karst fissure and the free surface gradually changes from the directional or co-directional to the reverse, the motion state of the rock mass at the slope top changes from slipping to toppling, and the role of karst fissure changes from a potential slip surface to the cracking boundary. Although the deformation damage of the reverse structural slope is not very serious, the influence of the karst fissure on the stability of the slope still cannot be ignored. This study aims to provide basic theoretical support for the subsequent research on the failure mechanism of karst mountains under the combined action of multi-structural planes. Numéro de notice : A2023-036 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/19475705.2022.2158376 Date de publication en ligne : 29/12/2023 En ligne : https://doi.org/10.1080/19475705.2022.2158376 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102305
in Geomatics, Natural Hazards and Risk > vol 14 n° 1 (2023) . - pp 1 - 32[article]Developing a GIS-based rough fuzzy set granulation model to handle spatial uncertainty for hydrocarbon structure classification, case study: Fars domain, Iran / Sahand Seraj in Geo-spatial Information Science, vol 25 n° 3 (October 2022)
[article]
Titre : Developing a GIS-based rough fuzzy set granulation model to handle spatial uncertainty for hydrocarbon structure classification, case study: Fars domain, Iran Type de document : Article/Communication Auteurs : Sahand Seraj, Auteur ; Mahmoud Reza Delavar, Auteur Année de publication : 2022 Article en page(s) : pp 399 - 41 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] cartographie géologique
[Termes IGN] classification floue
[Termes IGN] entropie de Shannon
[Termes IGN] forage
[Termes IGN] granulométrie (pétrologie)
[Termes IGN] hydrocarbure
[Termes IGN] incertitude géométrique
[Termes IGN] Iran
[Termes IGN] prospection minérale
[Termes IGN] sous ensemble flou
[Termes IGN] système d'information géographiqueRésumé : (auteur) It is well agreed that geologic risk occurs during hydrocarbon exploration because diverse uncertainties accompany the entire hydrocarbon system parameters such as the source rock, reservoir rock, trap and seal rock. In order to overcome such attributes with uncertainties, a number of soft computing methods are used. Information granules could be provided by the Rough Fuzzy Set Granulation (RFSG) with a thorough quality evaluation. This is capable of attribute reduction that has been claimed to be essential in investigating the hydrocarbon systems. This paper is an endeavor to recommend a Geospatial Information System (GIS)-based model with the aim of categorizing the hydrocarbon structures map consistent with the uncertainty range concepts of geologic risk in the rough fuzzy sets and granular computing. The model used the RFSG for the attribute reduction by a Decision Logic language (DL-language). The RFSG was employed in order to classify hydrocarbon structures according to geological risk and extract the fuzzy rules with a predefined range of uncertainty. In order to assess the precisions of the fuzzy decisions on the hydrocarbon structure classification, the fuzzy entropy and fuzzy cross-entropy are applied. The proposed RFSG model applied for 62 structures as the training data, average fuzzy entropy has been calculated as 0.85, whereas the average fuzzy cross-entropy has been calculated 0.18. As it can be discerned, just seven structures had cross-entropies greater than 0.1, while three structures were larger than 0.3. It is implied that the precision of the proposed model is about 89%. The results yielded two reductions for the condition attributes and 11 fuzzy rules being filtered by the granular computing values. Numéro de notice : A2022-724 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/10095020.2021.2020600 Date de publication en ligne : 03/02/2022 En ligne : https://doi.org/10.1080/10095020.2021.2020600 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101667
in Geo-spatial Information Science > vol 25 n° 3 (October 2022) . - pp 399 - 41[article]The fractional vegetation cover (FVC) and associated driving factors of modeling in mining areas / Jun Li in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 10 (October 2022)
[article]
Titre : The fractional vegetation cover (FVC) and associated driving factors of modeling in mining areas Type de document : Article/Communication Auteurs : Jun Li, Auteur ; Tianyu Guo, Auteur ; Chengye Zhang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 665 - 671 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse comparative
[Termes IGN] Chine
[Termes IGN] couvert végétal
[Termes IGN] Google Earth Engine
[Termes IGN] hétérogénéité spatiale
[Termes IGN] image Landsat-ETM+
[Termes IGN] image Landsat-OLI
[Termes IGN] industrie minière
[Termes IGN] mine
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] régression géographiquement pondérée
[Termes IGN] régression multiple
[Termes IGN] réseau neuronal artificielRésumé : (auteur) To determine the fractional vegetation cover (FVC) and associated driving factors of modeling in mining areas, six types of data were used as driving factors and three methods —multi-linear regression (MLR), geographically weighted regression (GWR), and geographically weighted artificial neural network (GWANN)— were adopted in the modeling. The experiments, conducted in Shengli mining areas located in Xilinhot city, China, show that the MLR model without consideration of spatial heterogeneity and spatial non-stationarity performs the worst and that the GWR model presents obvious location differences, since it predefines a linear relationship which is unable to describe FVC for some locations. The GWANN model, improving on these defects, is the most suitable model for the FVC driving process in mining areas; it outperforms the other two models, with root-mean-square error (RMSE) and mean absolute percentage error (MAPE) reaching 0.16 and 0.20. It has improvements of approximately 24% in RMSE and 33% in MAPE compared to the MLR model, and those values grow to 59% and 71% when compared with the GWR model. Numéro de notice : A2022-813 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.21-00070R3 Date de publication en ligne : 01/10/2022 En ligne : https://doi.org/10.14358/PERS.21-00070R3 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101973
in Photogrammetric Engineering & Remote Sensing, PERS > vol 88 n° 10 (October 2022) . - pp 665 - 671[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2022101 SL Revue Centre de documentation Revues en salle Disponible Detection of potential gold mineralization areas using MF-fuzzy approach on multispectral data / Tohid Nouri in Geocarto international, Vol 37 n° 17 ([20/08/2022])
[article]
Titre : Detection of potential gold mineralization areas using MF-fuzzy approach on multispectral data Type de document : Article/Communication Auteurs : Tohid Nouri, Auteur Année de publication : 2022 Article en page(s) : pp 5017 - 5040 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] altération géologique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] appariement d'images
[Termes IGN] diffraction
[Termes IGN] image multibande
[Termes IGN] Iran
[Termes IGN] logique floue
[Termes IGN] mine d'or
[Termes IGN] MNS ASTER
[Termes IGN] pixel
[Termes IGN] prospection minérale
[Termes IGN] sédiment
[Termes IGN] spectrométrieRésumé : (auteur) The northeast area of Ardabil, a city located in northwestern Iran, is one of the potential gold mineralization areas. In this study, ASTER data were used to identify the alteration events in this region. For this purpose, a novel approach was used in which the fuzzy logic was implemented to extract the co-occurrence map of the endmembers. This method revealed alterations more accurately than SID. Stream sediment samples were employed to validate the obtained results. Since these samples are alluvial, their catchment basins were determined and overlaid with the alteration maps. To the best of the authors’ knowledge, this validation approach has not been used in previous studies. The extracted alteration zones were in high conformity to the stream sediment samples. Next, X-ray diffraction (XRD) analysis and field spectrometry were used for delineation of the mineralogical phases present in the anomalous areas. Finally, the potential gold mineralization zones were identified. Numéro de notice : A2022-701 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2021.1903575 Date de publication en ligne : 07/06/2021 En ligne : https://doi.org/10.1080/10106049.2021.1903575 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101560
in Geocarto international > Vol 37 n° 17 [20/08/2022] . - pp 5017 - 5040[article]Advancements in underground mine surveys by using SLAM-enabled handheld laser scanners / Artu Ellmann in Survey review, vol 54 n° 385 (July 2022)
[article]
Titre : Advancements in underground mine surveys by using SLAM-enabled handheld laser scanners Type de document : Article/Communication Auteurs : Artu Ellmann, Auteur ; Kaia Kütimets, Auteur ; Sander Varbla, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 363 - 374 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] arpentage
[Termes IGN] carrière souterraine
[Termes IGN] cartographie et localisation simultanées
[Termes IGN] données lidar
[Termes IGN] Estonie
[Termes IGN] géoréférencement
[Termes IGN] industrie minière
[Termes IGN] mine
[Termes IGN] modélisation 3D
[Termes IGN] schiste
[Termes IGN] semis de points
[Termes IGN] système de numérisation mobile
[Termes IGN] télémètre laser terrestreRésumé : (auteur) Applicability of SLAM (simultaneous localization and mapping) technology for mine surveys and subsequent 3D modelling of post-extracted surfaces is assessed. The resulting surface geometry is validated via terrestrial laser scanner (TLS) acquired reference data. Typical discrepancies remained within 2 and 5 cm in horizontal and vertical directions, respectively. Discrepancies between TLS, SLAM-enabled handheld scanner and conventional surveying results are small and fully satisfy the contemporary accuracy requirements, yet evidence that the conventional mine survey results are affected by the subjectivity of the surveyors. The SLAM-enabled laser scanning hence appears to be the most suitable method for underground mining surveys. Numéro de notice : A2022-537 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/00396265.2021.1944545 Date de publication en ligne : 07/07/2021 En ligne : https://doi.org/10.1080/00396265.2021.1944545 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101093
in Survey review > vol 54 n° 385 (July 2022) . - pp 363 - 374[article]Risk assessment and prediction of forest health for effective geo-environmental planning and monitoring of mining affected forest area in hilltop region / Narayan Kayet in Geocarto international, vol 37 n° 11 ([15/06/2022])PermalinkA prediction model for surface deformation caused by underground mining based on spatio-temporal associations / Min Ren in Geomatics, Natural Hazards and Risk, vol 13 (2022)PermalinkValidation of the accuracy of geodetic automated measurement system based on GNSS platform for continuous monitoring of surface movements in post-mining areas / Violetta Sokoła-Szewioła in Reports on geodesy and geoinformatics, vol 112 n° 1 (December 2021)PermalinkUsing machine learning to map Western Australian landscapes for mineral exploration / Thomas Albrecht in ISPRS International journal of geo-information, vol 10 n° 7 (July 2021)PermalinkApport de la photogrammétrie et de l’intelligence artificielle à la détection des zones amiantées sur les fronts rocheux / Philippe Caudal (2021)PermalinkPermalinkNovel communication channel model for signal propagation and loss through layered earth / David O. LeVan in IEEE Transactions on geoscience and remote sensing, vol 58 n° 8 (August 2020)PermalinkComplete and accurate data correction for seamless mosaicking of airborne hyperspectral images: A case study at a mining site in Inner Mongolia, China / Kun Tan in ISPRS Journal of photogrammetry and remote sensing, vol 165 (July 2020)PermalinkFusing adjacent-track InSAR datasets to densify the temporal resolution of time-series 3-D displacement estimation over mining areas with a prior deformation model and a generalized weighting least-squares method / Yuedong Wang in Journal of geodesy, vol 94 n° 5 (May 2020)PermalinkGeological map generalization driven by size constraints / Azimjon Sayidov in ISPRS International journal of geo-information, vol 9 n° 4 (April 2020)Permalink