Descripteur
Documents disponibles dans cette catégorie (682)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Three-dimensional building change detection using object-based image analysis (case study: Tehran) / Fatemeh Tabib Mahmoudi in Applied geomatics, vol 13 n° 3 (September 2021)
[article]
Titre : Three-dimensional building change detection using object-based image analysis (case study: Tehran) Type de document : Article/Communication Auteurs : Fatemeh Tabib Mahmoudi, Auteur ; Sharareh Hosseini, Auteur Année de publication : 2021 Article en page(s) : pp 325 - 332 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] analyse d'image orientée objet
[Termes IGN] analyse diachronique
[Termes IGN] Bâti-3D
[Termes IGN] détection de changement
[Termes IGN] détection du bâti
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] gestion urbaine
[Termes IGN] hauteur du bâti
[Termes IGN] Matlab
[Termes IGN] modèle 3D de l'espace urbain
[Termes IGN] modèle numérique de surface
[Termes IGN] segmentation d'image
[Termes IGN] TéhéranRésumé : (auteur) Natural disasters such as earthquakes and floods together with the urban sprawl conducted by increasing the population make multi-temporal changes in building areas. Destruction, buildings’ renovation, and constructing new buildings are the main changes of the urban areas that should be detected to update three-dimensional city models. The results of performing three-dimensional changes detecting of high altitude objects such as buildings are more close to reality than the two-dimensional methods. In this study, a three-dimensional changes detection method is proposed based on digital elevation models (DEMs). In the first step of this proposed method, the normalized digital surface model (nDSM) is generated for timely datasets. Then, object-based image analysis is utilized by performing segmentation followed by the structural classification of DEMs. Differencing and comparing the multi-temporal classification maps as the third step of the proposed algorithm led to analyzing the occurred changes. The obtained results are evaluated in an urban area in Tehran, Iran, in a 9-year time interval. These results represent −9.7% decreasing rate in low-rise buildings and also −1.37% decreases in the ground. Moreover, the class of high-rise buildings increased for +16.4% which conforms to making new constructions in addition to the renovation of low-rise buildings. According to the area analyzing of the changes, 4.8% of the investigated study area has new constructions, 3.05% has buildings’ renovation, and 3.89% has destruction in that 9-year period. Numéro de notice : A2021-623 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s12518-020-00349-w Date de publication en ligne : 07/01/2021 En ligne : https://doi.org/10.1007/s12518-020-00349-w Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98247
in Applied geomatics > vol 13 n° 3 (September 2021) . - pp 325 - 332[article]Utilisation de l'apprentissage profond dans la modélisation 3D urbaine [Partie 1] / Hamza Ben Addou in Géomatique expert, n° 135 (septembre 2021)
[article]
Titre : Utilisation de l'apprentissage profond dans la modélisation 3D urbaine [Partie 1] Type de document : Article/Communication Auteurs : Hamza Ben Addou, Auteur Année de publication : 2021 Article en page(s) : pp 11 - 20 Langues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection du bâti
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] emprise au sol
[Termes IGN] fusion de données multisource
[Termes IGN] image aérienne
[Termes IGN] information sémantique
[Termes IGN] modèle 3D de l'espace urbain
[Termes IGN] segmentation d'image
[Termes IGN] semis de pointsRésumé : (Auteur) Partie 1 : Mise en place d’un processus de détection automatique des emprises de bâtiments par apprentissage profond Numéro de notice : A2021-660 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE/URBANISME Nature : Article nature-HAL : ArtSansCL DOI : sans Date de publication en ligne : 01/09/2021 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98414
in Géomatique expert > n° 135 (septembre 2021) . - pp 11 - 20[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité IFN-001-P002273 PER Revue Nogent-sur-Vernisson Salle périodiques Exclu du prêt Research on 3D model reconstruction based on a sequence of cross-sectional images / Zhiguo Dong in Machine Vision and Applications, vol 32 n°4 (July 2021)
[article]
Titre : Research on 3D model reconstruction based on a sequence of cross-sectional images Type de document : Article/Communication Auteurs : Zhiguo Dong, Auteur ; Xiaobo Wu, Auteur ; Zhipeng Ma, Auteur Année de publication : 2021 Article en page(s) : n° 92 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] analyse infrapixellaire
[Termes IGN] B-Spline
[Termes IGN] détection de contours
[Termes IGN] modélisation 3D
[Termes IGN] reconstruction 3D
[Termes IGN] reconstruction d'objet
[Termes IGN] semis de pointsRésumé : (auteur) It is often difficult to obtain the high-precision inner cavity contour size and 3D model of parts and components in reverse engineering. This paper proposes a method that uses a sequence of section images of a part to reconstruct their 3D models. This method cuts the part layer by layer to obtain the sectional images and extracts the 3D information of the sectional image contours to generate point clouds. These point clouds are then used to reconstruct a 3D model of the part. High contrast material is used to embed the target part for pre-processing. A machining centre was used to mill the part layer by layer vertically to acquire high precision section profile images. The improved Canny edge detection operator was combined with the spatial moment sub-pixel subdivision algorithm to improve the edge detection accuracy. The camera imaging model algorithm transforms the coordinates of the image edge position to obtain a high-precision 3D point cloud of the part. The 3D solid model of the target part was obtained using NURBS surface reconstruction. The results show that the 3D model reconstruction method using the profile sequence of the cross-sectional images is independent of the complexity of the part’s structure and the complete internal structure of the part can be obtained. The proposed edge detection algorithm significantly refines the edge position of the contours in the cross-sectional image and the measurement accuracy was improved. This method improves the minimum deviation to 50 μm. The shape accuracy of roundness, cylindricity and perpendicularity of the structure is high. The proposed method can meet the reverse precision requirements in general precision machining. Numéro de notice : A2021-635 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00138-021-01220-7 Date de publication en ligne : 11/06/2021 En ligne : https://doi.org/10.1007/s00138-021-01220-7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98299
in Machine Vision and Applications > vol 32 n°4 (July 2021) . - n° 92[article]Sensitivity of voxel-based estimations of leaf area density with terrestrial LiDAR to vegetation structure and sampling limitations: A simulation experiment / Maxime Soma in Remote sensing of environment, vol 257 (May 2021)
[article]
Titre : Sensitivity of voxel-based estimations of leaf area density with terrestrial LiDAR to vegetation structure and sampling limitations: A simulation experiment Type de document : Article/Communication Auteurs : Maxime Soma, Auteur ; François Pimont, Auteur ; Jean-Luc Dupuy, Auteur Année de publication : 2021 Article en page(s) : n° 112354 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse de sensibilité
[Termes IGN] densité du feuillage
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] échantillonnage
[Termes IGN] Leaf Area Index
[Termes IGN] Leaf Mass per Area
[Termes IGN] semis de points
[Termes IGN] structure de la végétation
[Termes IGN] voxelRésumé : (auteur) The need for fine scale description of vegetation structure is increasing as Leaf Area Density (LAD, m2/m3) becomes a critical parameter to understand ecosystem functioning and energy and mass fluxes in heterogeneous ecosystems. Terrestrial Laser Scanning (TLS) has shown great potential for retrieving the foliage area at stand, plant or voxel scales. Several sources of measurement errors have been identified and corrected over the past years. However, measurements remain sensitive to several factors, including, 1) voxel size and vegetation structure within voxels, 2) heterogeneity in sampling from TLS instrument (occlusion and shooting pattern), the consequences of which have been seldom analyzed at the scale of forest plots. In the present paper, we aimed at disentangling biases and errors in plot-scale measurements of LAD with TLS in a simulated vegetation scene. Two negative biases were formerly attributed to (i) the unsampled voxels and to (ii) the subgrid vegetation heterogeneity (i.e. clumping effect), and then quantified, thanks to a the simulation experiment providing known LAD references at voxel scale, vegetation manipulations and unbiased point estimators. We used confidence intervals to evaluate voxel-scale measurement accuracy. Numéro de notice : A2021-278 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.rse.2021.112354 Date de publication en ligne : 18/02/2021 En ligne : https://doi.org/10.1016/j.rse.2021.112354 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97371
in Remote sensing of environment > vol 257 (May 2021) . - n° 112354[article]Structure-aware completion of photogrammetric meshes in urban road environment / Qing Zhu in ISPRS Journal of photogrammetry and remote sensing, vol 175 (May 2021)
[article]
Titre : Structure-aware completion of photogrammetric meshes in urban road environment Type de document : Article/Communication Auteurs : Qing Zhu, Auteur ; Qisen Shang, Auteur ; Han Hu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 56 - 70 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection d'objet
[Termes IGN] détection de partie cachée
[Termes IGN] espace urbain
[Termes IGN] image aérienne oblique
[Termes IGN] maillage
[Termes IGN] modélisation 3D
[Termes IGN] reconstruction de route
[Termes IGN] réseau routier
[Termes IGN] texture d'image
[Termes IGN] véhicule automobileRésumé : (auteur) Photogrammetric mesh models obtained from aerial oblique images have been widely used for urban reconstruction. However, photogrammetric meshes suffer from severe texture problems, particularly in typical road areas, owing to occlusion. This paper proposes a structure-aware completion approach to improve mesh quality by seamlessly removing undesired vehicles. Specifically, a discontinuous texture atlas is first integrated into a continuous screen space by rendering trough a graphics pipeline. The rendering also records the necessary mapping for deintegration to the original texture atlas after editing. Vehicle regions are masked by a standard object detection approach, namely, Faster RCNN. Subsequently, the masked regions are completed, guided by the linear structures and regularities in the road region; this is implemented based on PatchMatch. Finally, the completed rendered image is deintegrated to the original texture atlas, and the triangles for the vehicles are also flattened so that improved meshes can be obtained. Experimental evaluation and analysis are conducted on three datasets, which were captured with different sensors and ground sample distances. The results demonstrate that the proposed method can produce quite realistic meshes after removing the vehicles. The structure-aware completion approach for road regions outperforms popular image completion methods, and an ablation study further confirms the effectiveness of the linear guidance. It should be noted that the proposed method can also handle tiled mesh models for large-scale scenes. Code and datasets are available at the project website. Numéro de notice : A2021-263 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.02.010 Date de publication en ligne : 11/03/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.02.010 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97312
in ISPRS Journal of photogrammetry and remote sensing > vol 175 (May 2021) . - pp 56 - 70[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021051 SL Revue Centre de documentation Revues en salle Disponible 081-2021052 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt 081-2021053 DEP-RECP Revue Saint-Mandé Dépôt en unité Exclu du prêt A skyline-based approach for mobile augmented reality / Mehdi Ayadi in The Visual Computer, vol 37 n° 4 (April 2021)PermalinkVisual positioning in indoor environments using RGB-D images and improved vector of local aggregated descriptors / Longyu Zhang in ISPRS International journal of geo-information, vol 10 n° 4 (April 2021)PermalinkAutomated registration of SfM‐MVS multitemporal datasets using terrestrial and oblique aerial images / Luigi Parente in Photogrammetric record, vol 36 n° 173 (March 2021)PermalinkDevelopment of German-Ukrainian cooperations for education and research in photogrammetry and laser scanning / Thomas Luhmann in Geo-spatial Information Science, vol 24 n° 1 (March 2021)PermalinkDynamic human body reconstruction and motion tracking with low-cost depth cameras / Kangkan Wang in The Visual Computer, vol 37 n° 3 (March 2021)PermalinkProgressive TIN densification with connection analysis for urban Lidar data / Tao Wang in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 3 (March 2021)PermalinkSpatial multi-criteria evaluation in 3D context: suitability analysis of urban vertical development / Kendra Munn in Cartography and Geographic Information Science, vol 48 n° 2 (March 2021)PermalinkImproving trajectory estimation using 3D city models and kinematic point clouds / Lucas Lucks in Transactions in GIS, Vol 25 n° 1 (February 2021)PermalinkAccurate assessment of protected area boundaries for land use planning using 3D GIS / Dilek Tezel in Geocarto international, vol 36 n° 1 ([01/01/2021])PermalinkAleatoric uncertainty estimation for dense stereo matching via CNN-based cost volume analysis / Max Mehltretter in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)PermalinkAn efficient representation of 3D buildings: application to the evaluation of city models / Oussama Ennafii (2021)PermalinkAn improved approach based on terrain-dependent mathematical models for georeferencing pushbroom satellite images / Behrooz Moradi in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 1 (January 2021)PermalinkApport de la photogrammétrie dans la documentation et le suivi d’une tranchée archéologique / Iris Lucas (2021)PermalinkAssessment of sky diffuse irradiance and building reflected irradiance in cast shadows / Manchun Lei (2021)PermalinkPermalinkCartographie dense et compacte par vision RGB-D pour la navigation d’un robot mobile / Bruce Canovas (2021)PermalinkPermalinkDétection et reconstruction 3D d’arbres urbains par segmentation de nuages de points : apport de l’apprentissage profond / Victor Alteirac (2021)PermalinkFrom point clouds to high-fidelity models - advanced methods for image-based 3D reconstruction / Audrey Richard (2021)PermalinkPermalink