Descripteur
Documents disponibles dans cette catégorie (682)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Estimating architecture-based metabolic scaling exponents of tropical trees using terrestrial LiDAR and 3D modelling / Alvaro Lau in Forest ecology and management, vol 439 (1 May 2019)
[article]
Titre : Estimating architecture-based metabolic scaling exponents of tropical trees using terrestrial LiDAR and 3D modelling Type de document : Article/Communication Auteurs : Alvaro Lau, Auteur ; Christopher Martius, Auteur ; Harm Bartholomeus, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 132-145 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] allométrie
[Termes IGN] bois sur pied
[Termes IGN] branche (arbre)
[Termes IGN] diamètre des arbres
[Termes IGN] données lidar
[Termes IGN] forêt tropicale
[Termes IGN] Guyana
[Termes IGN] mise à l'échelle
[Termes IGN] modélisation 3D
[Termes IGN] semis de points
[Termes IGN] structure d'un peuplement forestier
[Termes IGN] télémétrie laser terrestreRésumé : (auteur) The geometric structure of tree branches has been hypothesized to relate to the mechanical safety and efficiency of resource transport within a tree. As such, the topology of tree architecture links physical properties within a tree and influences the interaction of the tree with its environment. Prior work suggests the existence of general principles which govern tree architectural patterns across of species and bio-geographical regions. In particular, West, Brown and Enquist (WBE, 1997) and Savage et al. (2010) derive scaling exponents (branch radius scaling ratio and branch length scaling ratio ) from symmetrical branch parameters and from these, an architecture-based metabolic scaling rate () for the whole tree. With this key scaling exponent, the metabolism (e.g., number of leaves, respiration, etc.) of a whole tree, or potentially a group of trees, can be estimated allometrically. Until now, branch parameter values have been measured manually; either from standing live trees or from harvested trees. Such measurements are time consuming, labour intensive and susceptible to subjective errors. Remote sensing, and specifically terrestrial LiDAR (TLS), is a promising alternative, being objective, scalable, and able to collect large quantities of data without destructive sampling. In this paper, we calculated branch length, branch radius, and architecture-based metabolic rate scaling exponents by first using TLS to scan standing trees and then fitting quantitative structure models (TreeQSM) models to 3D point clouds from nine trees in a tropical forest in Guyana. To validate these TLS-derived scaling exponents, we compared them with exponents calculated from direct field measurements of all branches >10 cm at four scales: branch-level, cumulative branch order, tree-level and plot-level. We found a bias on the estimations of and exponents due to a bias on the reconstruction of the branching architecture. Although TreeQSM scaling exponents predicted similar as the manually measured exponents, this was due to the combination of and scaling exponents which were both biased. Also, the manually measured and scaling exponents diverged from the WBE’s theoretical exponents suggesting that trees in tropical environments might not follow the predictions for the symmetrical branching geometry proposed by WBE. Our study provides an alternative method to estimate scaling exponents at both the branch- and tree-level in tropical forest trees without the need for destructive sampling. Although this approach is based on a limited sample of nine trees in Guyana, it can be implemented for large-scale plant scaling assessments. These new data might improve our current understanding of metabolic scaling without harvesting trees. Numéro de notice : A2019-485 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.foreco.2019.02.019 Date de publication en ligne : 07/03/2019 En ligne : https://doi.org/10.1016/j.foreco.2019.02.019 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93664
in Forest ecology and management > vol 439 (1 May 2019) . - pp 132-145[article]A new method of equiangular sectorial voxelization of single-scan terrestrial laser scanning data and its applications in forest defoliation estimation / Langning Huo in ISPRS Journal of photogrammetry and remote sensing, vol 151 (May 2019)
[article]
Titre : A new method of equiangular sectorial voxelization of single-scan terrestrial laser scanning data and its applications in forest defoliation estimation Type de document : Article/Communication Auteurs : Langning Huo, Auteur ; Xiaoli Zhang, Auteur Année de publication : 2019 Article en page(s) : pp 302 - 312 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] canopée
[Termes IGN] défoliation
[Termes IGN] densité des points
[Termes IGN] régression linéaire
[Termes IGN] télémétrie laser terrestre
[Termes IGN] voxelRésumé : (Auteur) Voxelization is an efficient and frequently used data process that is applied to terrestrial laser scanning (TLS) data to facilitate data management and reduce storage size. In this study, an innovative method of equiangular sectorial voxelization is presented based on the distinctive point distribution characteristic of single-scan TLS. It has the function of containing the same number of laser beams going through each voxel, which results in metrics that can be applied to delineate forest conditions. To verify the effectiveness of the new voxelization method and to illustrate its application, 48 plots and 1098 individual trees with different degrees of defoliation were scanned using single-scan TLS. Their defoliation could be linearly regressed by using only point density metrics derived from this new shape of voxels. A 0.89 R2 value and a 12 RMSE (% of defoliation) were obtained for individual-tree-scale estimation, and a 0.83 R2 value and a 12 RMSE (% of defoliation) were obtained for plot-scale estimation. We conclude that the new voxelization method was effective, and the point density that was thus calculated was an efficient feature that revealed forest attributes. Numéro de notice : A2019-212 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.03.018 Date de publication en ligne : 30/03/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.03.018 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92678
in ISPRS Journal of photogrammetry and remote sensing > vol 151 (May 2019) . - pp 302 - 312[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019051 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019053 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019052 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Pairwise coarse registration of point clouds in urban scenes using voxel-based 4-planes congruent sets / Yusheng Xu in ISPRS Journal of photogrammetry and remote sensing, vol 151 (May 2019)
[article]
Titre : Pairwise coarse registration of point clouds in urban scenes using voxel-based 4-planes congruent sets Type de document : Article/Communication Auteurs : Yusheng Xu, Auteur ; Richard Boerner, Auteur ; Wei Yao, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 106 - 123 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] appariement d'images
[Termes IGN] congruence
[Termes IGN] données 4D
[Termes IGN] données lidar
[Termes IGN] données spatiotemporelles
[Termes IGN] modèle stéréoscopique
[Termes IGN] octree
[Termes IGN] Ransac (algorithme)
[Termes IGN] scène urbaine
[Termes IGN] semis de points
[Termes IGN] surface plane
[Termes IGN] voxelRésumé : (Auteur) To ensure complete coverage when measuring a large-scale urban area, pairwise registration between point clouds acquired via terrestrial laser scanning or stereo image matching is usually necessary when there is insufficient georeferencing information from additional GNSS and INS sensors. In this paper, we propose a semi-automatic and target-less method for coarse registration of point clouds using geometric constraints of voxel-based 4-plane congruent sets (V4PCS). The planar patches are firstly extracted from voxelized point clouds. Then, the transformation invariant, 4-plane congruent sets are constructed from extracted planar surfaces in each point cloud. Initial transformation parameters between point clouds are estimated via corresponding congruent sets having the highest registration scores in the RANSAC process. Finally, a closed-form solution is performed to achieve optimized transformation parameters by finding all corresponding planar patches using the initial transformation parameters. Experimental results reveal that our proposed method can be effective for registering point clouds acquired from various scenes. A success rate of better than 80% was achieved, with average rotation errors of about 0.5 degrees and average translation errors less than approximately 0.6 m. In addition, our proposed method is more efficient than other baseline methods when using the same hardware and software configuration conditions. Numéro de notice : A2019-207 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.02.015 Date de publication en ligne : 18/03/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.02.015 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92673
in ISPRS Journal of photogrammetry and remote sensing > vol 151 (May 2019) . - pp 106 - 123[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019051 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019053 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019052 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Plans-reliefs, ancêtres de la modélisation / Marielle Mayo in Géomètre, n° 2169 (mai 2019)
[article]
Titre : Plans-reliefs, ancêtres de la modélisation Type de document : Article/Communication Auteurs : Marielle Mayo, Auteur Année de publication : 2019 Article en page(s) : pp 48 - 51 Langues : Français (fre) Descripteur : [Vedettes matières IGN] Cartographie ancienne
[Termes IGN] données localisées 3D
[Termes IGN] Lille
[Termes IGN] modélisation 3D
[Termes IGN] musée
[Termes IGN] numérisation de carte
[Termes IGN] plan-relief
[Termes IGN] réalité virtuelle
[Termes IGN] SIG 3DRésumé : (auteur) Au palais des Beaux-Arts de Lille, la salle des plans-reliefs a fait peau neuve. Elle renouvelle le regard sur les premières représentations des villes et de leur territoire, qui documentent l'histoire urbaine et militaire. Numéro de notice : A2019-234 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtSansCL DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92756
in Géomètre > n° 2169 (mai 2019) . - pp 48 - 51[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 063-2019051 RAB Revue Centre de documentation En réserve L003 Disponible Voxel-based 3D point cloud semantic segmentation: unsupervised geometric and relationship featuring vs deep learning methods / Florent Poux in ISPRS International journal of geo-information, vol 8 n° 5 (May 2019)
[article]
Titre : Voxel-based 3D point cloud semantic segmentation: unsupervised geometric and relationship featuring vs deep learning methods Type de document : Article/Communication Auteurs : Florent Poux, Auteur ; Roland Billen, Auteur Année de publication : 2019 Article en page(s) : n° 213 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] arbre de décision
[Termes IGN] classification dirigée
[Termes IGN] classification non dirigée
[Termes IGN] connexité (topologie)
[Termes IGN] données localisées 3D
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] segmentation sémantique
[Termes IGN] semis de points
[Termes IGN] voxelRésumé : (auteur) Automation in point cloud data processing is central in knowledge discovery within decision-making systems. The definition of relevant features is often key for segmentation and classification, with automated workflows presenting the main challenges. In this paper, we propose a voxel-based feature engineering that better characterize point clusters and provide strong support to supervised or unsupervised classification. We provide different feature generalization levels to permit interoperable frameworks. First, we recommend a shape-based feature set (SF1) that only leverages the raw X, Y, Z attributes of any point cloud. Afterwards, we derive relationship and topology between voxel entities to obtain a three-dimensional (3D) structural connectivity feature set (SF2). Finally, we provide a knowledge-based decision tree to permit infrastructure-related classification. We study SF1/SF2 synergy on a new semantic segmentation framework for the constitution of a higher semantic representation of point clouds in relevant clusters. Finally, we benchmark the approach against novel and best-performing deep-learning methods while using the full S3DIS dataset. We highlight good performances, easy-integration, and high F1-score (> 85%) for planar-dominant classes that are comparable to state-of-the-art deep learning. Numéro de notice : A2019-656 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/ijgi8050213 Date de publication en ligne : 07/05/2019 En ligne : https://doi.org/10.3390/ijgi8050213 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97890
in ISPRS International journal of geo-information > vol 8 n° 5 (May 2019) . - n° 213[article]An appearance‐preserving simplification method for complex 3D building models / Jiangfeng She in Transactions in GIS, vol 23 n° 2 (April 2019)PermalinkBIM, SIG et recherche dans le secteur privé / Anonyme in Géomatique expert, n° 127 (avril - mai 2019)PermalinkOrléans monte sa maquette virtuelle / Anonyme in Géomatique expert, n° 127 (avril - mai 2019)PermalinkConditional random field and deep feature learning for hyperspectral image classification / Fahim Irfan Alam in IEEE Transactions on geoscience and remote sensing, vol 57 n° 3 (March 2019)PermalinkNumérisation et modélisation 3D du Jardin d’Hiver du Musée de la Faïence de Sarreguemines / Valentin Girardet in XYZ, n° 158 (mars 2019)PermalinkA derivative-free optimization-based approach for detecting architectural symmetries from 3D point clouds / Fan Xue in ISPRS Journal of photogrammetry and remote sensing, vol 148 (February 2019)PermalinkDeveloping an optimized texture mapping for photorealistic 3D buildings / Jungil Lee in Transactions in GIS, vol 23 n° 1 (February 2019)PermalinkA time‐geographic approach to quantifying wildlife–road interactions / Rebecca W. Loraamm in Transactions in GIS, vol 23 n° 1 (February 2019)Permalink100% automatic metrology with UAV photogrammetry and embedded GPS, and its application in dike monitoring / Yilin Zhou (2019)Permalink3D radiative transfer modeling over complex vegetation canopies and forest reconstruction from LIDAR measurements / Jianbo Qi (2019)PermalinkPermalinkPermalinkPermalinkModeling evacuation in institutional space: Linking three-dimensional data capture, simulation, analysis, and visualization workflows for risk assessment and communication / Ian M. Lochhead in Information visualization, vol 18 n° 1 (January 2019)PermalinkRecalage conjoint de données de cartographie mobile et de modèles 3D de bâtiments / Miloud Mezian (2019)PermalinkPermalinkSemantic aware quality evaluation of 3D building models : Modeling and simulation / Oussama Ennafii (2019)PermalinkSpatial decision support in urban environments using machine learning, 3D geo-visualization and semantic integration of multi-source data / Nikolaos Sideris (2019)PermalinkPermalinkThe necessary yet complex evaluation of 3D city models: a semantic approach / Oussama Ennafii (2019)Permalink