Descripteur
Termes IGN > géomatique > géopositionnement > positionnement par géodésie spatiale > positionnement par ITGB
positionnement par ITGBSynonyme(s)positionnement par VLBIVoir aussi |
Documents disponibles dans cette catégorie (56)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
GRGS numerical simulations for a GRASP-like mission: A way to reach the GGOS goal for terrestrial reference frame / Arnaud Pollet in Journal of geodesy, vol 97 n° 5 (May 2023)
[article]
Titre : GRGS numerical simulations for a GRASP-like mission: A way to reach the GGOS goal for terrestrial reference frame Type de document : Article/Communication Auteurs : Arnaud Pollet , Auteur ; David Coulot , Auteur ; Richard Biancale, Auteur ; Felix Perozans, Auteur ; Sylvain Loyer, Auteur ; J.C. Marty, Auteur ; Susanne Glaser, Auteur ; Vladimir Schott-Guilmault, Auteur ; Jean-Michel Lemoine, Auteur ; Flavien Mercier, Auteur ; Samuel Nahmani , Auteur ; Mioara Mandea, Auteur Année de publication : 2023 Article en page(s) : n° 45 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] International DORIS Service
[Termes IGN] mission spatiale
[Termes IGN] orbitographie
[Termes IGN] positionnement par ITGB
[Termes IGN] positionnement par télémétrie laser sur satellite
[Termes IGN] repère de référenceRésumé : (auteur) In 2009, the geoscience community has fixed an objective of 1 mm accuracy and 0.1 mm/yr stability for the terrestrial reference frame (TRF) realization (Global Geodetic Observing System, GGOS, Meeting the Requirements of a Global Society on a Changing Planet in 2020, Plag and Pearlman in Global geodetic observing system: meeting the requirements of a global society on a changing planet in 2020. Springer, Berlin, 2009. https://doi.org/10.1007/978-3-642-02687-4). This accuracy and stability are needed for diversified studies like climate change, tectonic sciences and more generally any geoscience requiring the use of an accurate and precise TRF. Unfortunately, they are still not reached by the last International Terrestrial Reference Frame. To reach this goal, the use of “multi-technique” satellites as “space-ties” has been studied since 2011 and a few proposals have been made in response to different space agency calls: the Geodetic Reference Antenna in Space (GRASP) mission—NASA Earth Venture 2 call, Eratosthenes-GRASP (E-GRASP)—ESA Earth Explorer 9 (EE9) call, MOBILE—ESA EE10 call, MARVEL—CNES Séminaire de Prospective Scientifique 2019). In this article, we present the numerical simulations carried out by the French Groupe de Recherche de Géodésie Spatiale (GRGS) for the E-GRASP proposal in response to the ESA EE-9 call and their improvements carried out afterwards. These simulations aim to answer three different questions:
Is it possible to reach the GGOS requirements for the TRF with the measurements of a GRASP-like satellite like E-GRASP alone?
If it is possible, which level of accuracy for the positioning of the on-board antennas is needed?
What is the minimal lifetime of a E-GRASP mission to reach the GGOS requirements?
The results of these simulations show that a E-GRASP satellite can allow us to reach, after five years, an accuracy close to 1 mm and a stability better than 0.1 mm/yr for the TRF. However, it is necessary to ensure a positioning better than 1 mm for the on-board antennas. We therefore encourage the new ESA GENESIS mission proposal, accepted during the ESA last Ministerial meeting on 23rd November 2022, which takes up the concept of a GRASP-type satellite.Numéro de notice : A2023-227 Affiliation des auteurs : UMR IPGP-Géod+Ext (2020- ) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-023-01730-4 Date de publication en ligne : 15/05/2023 En ligne : https://doi.org/10.1007/s00190-023-01730-4 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103247
in Journal of geodesy > vol 97 n° 5 (May 2023) . - n° 45[article]The importance of co-located VLBI Intensive stations and GNSS receivers / Christopher Dieck in Journal of geodesy, vol 97 n° 3 (March 2023)
[article]
Titre : The importance of co-located VLBI Intensive stations and GNSS receivers Type de document : Article/Communication Auteurs : Christopher Dieck, Auteur ; Megan C. Johnson, Auteur ; Daniel S. MacMillan, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 21 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] Hawaii (Etats-Unis)
[Termes IGN] interférométrie à très grande base
[Termes IGN] positionnement par ITGB
[Termes IGN] rapport signal sur bruit
[Termes IGN] récepteur GNSS
[Termes IGN] station GNSS
[Termes IGN] station VLBI
[Termes IGN] temps universel coordonnéRésumé : (auteur) Frequent, low-latency measurements of the Earth’s rotation phase, expressed as UT1−UTC critically support the current estimate and short-term prediction of this highly variable Earth orientation parameter (EOP). Very long baseline interferometry (VLBI) Intensive sessions provide the required data. However, the Intensive UT1−
UTC measurement accuracy depends on the accuracy of numerous models, including the VLBI station position. Intensives observed with the Maunakea (Mk) and Pie Town (Pt) stations of the Very Long Baseline Array (VLBA) illustrate how a geologic event (i.e., the Mw 6.9 Hawai‘i Earthquake of May 4th, 2018) can cause a station displacement and an associated offset in the values of UT1−UTC measured by that baseline, rendering the data from the series useless until it is corrected. Using the nonparametric Nadaraya–Watson estimator to smooth the measured UT1−UTC values before and after the earthquake, we calculate the offset in the measurement to be 75.7 ± 4.6 μs. Analysis of the sensitivity of the Mk-Pt baseline’s UT1−UTC measurement to station position changes shows that the measured offset is consistent with the 67.2 ± 5.9 μs expected offset based on the 12.4 ± 0.6 mm total coseismic displacement of the Maunakea VLBA station determined from the displacement of the co-located global navigation satellite system (GNSS) station. GNSS station position information is known with a latency on the order of tens of hours and thus can be used to correct the a priori position model of a co-located VLBI station such that it can continue to provide accurate measurements of the critical EOP UT1−UTC as part of Intensive sessions. In the absence of a co-located GNSS receiver, the VLBI station position model would likely not be updated for several months, and a near real-time correction would not be possible. This contrast highlights the benefit of co-located GNSS and VLBI stations in support of the monitoring of UT1−UTC with single-baseline Intensives.Numéro de notice : A2023-133 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-022-01690-1 Date de publication en ligne : 03/03/2023 En ligne : https://doi.org/10.1007/s00190-022-01690-1 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102678
in Journal of geodesy > vol 97 n° 3 (March 2023) . - n° 21[article]GNSS scale determination using calibrated receiver and Galileo satellite antenna patterns / Arturo Villiger in Journal of geodesy, vol 94 n° 9 (September 2020)
[article]
Titre : GNSS scale determination using calibrated receiver and Galileo satellite antenna patterns Type de document : Article/Communication Auteurs : Arturo Villiger, Auteur ; Rolf Dach, Auteur ; Stefan Schaer, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : n° 93 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Systèmes de référence et réseaux
[Termes IGN] antenne Galileo
[Termes IGN] centre de phase
[Termes IGN] chambre anéchoïque
[Termes IGN] étalonnage d'instrument
[Termes IGN] International Terrestrial Reference Frame
[Termes IGN] métadonnées
[Termes IGN] positionnement par ITGB
[Termes IGN] positionnement par télémétrie laser sur satellite
[Termes IGN] réseau géodésique terrestre
[Termes IGN] robotRésumé : (auteur) The reference frame of a global terrestrial network is defined by the origin, the orientation and the scale. The origin of the ITRF2014 is defined by the ILRS long-term solution, the orientation by no-net rotation conditions w.r.t. the previous reference frame (ITRF2008), and the scale by the mean values from global VLBI and SLR solution series (Altamimi et al. in J Geophys Res Solid Earth 121:6109–6131, 2016). With the release of the Galileo satellite antenna phase center offsets (PCO) w.r.t. the satellites center of mass (GSA in Galileo IOV and FOC satellite metadata, 2019) and the availability of new ground antenna calibrations for GNSS receivers, based on anechoic chamber measurements or on robot calibrations, GNSS global network solutions qualify to contribute to the scale determination of terrestrial networks, as well. Our analysis is based on global multi-GNSS solutions of the years 2017 and 2018 and may be seen as “proof of concept” for the contribution of GNSS data to the scale determination of the terrestrial reference frame. In a first step, the currently used Galileo PCO estimations (Steigenberger et al. in J Geod 90:773–785, 2016) are compared to the released PCO values, which show discrepancies on the decimeter-level. Eventually, the published Galileo PCOs are used in an experimental solution as known values. GNSS-specific PCOs are estimated, as well, for GPS and GLONASS, together with the “standard” parameters set up in global GNSS solutions. From the estimated network coordinates, a time series of daily scale parameters of the terrestrial network is extracted, which shows an offset of the order of 1 ppb (parts per billion, corresponding to a height difference of 6.4 mm on the Earth’s surface) w.r.t. to the ITRF2014 network and an annual variation with an amplitude of about 0.3 ppb. Numéro de notice : A2020-539 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-020-01417-0 Date de publication en ligne : 05/09/2020 En ligne : https://doi.org/10.1007/s00190-020-01417-0 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95739
in Journal of geodesy > vol 94 n° 9 (September 2020) . - n° 93[article]Combinatorial optimization applied to VLBI scheduling / A. Corbin in Journal of geodesy, vol 94 n°2 (February 2020)
[article]
Titre : Combinatorial optimization applied to VLBI scheduling Type de document : Article/Communication Auteurs : A. Corbin, Auteur ; B. Niedermann, Auteur ; Axel Nothnagel, Auteur ; et al., Auteur Année de publication : 2020 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] analyse combinatoire (maths)
[Termes IGN] données VGOS
[Termes IGN] interférométrie à très grande base
[Termes IGN] positionnement par ITGB
[Termes IGN] programmation linéaire
[Termes IGN] retard troposphérique zénithal
[Termes IGN] station VLBI
[Termes IGN] téléscope
[Termes IGN] temps universel coordonnéRésumé : (auteur) Due to the advent of powerful solvers, today linear programming has seen many applications in production and routing. In this publication, we present mixed-integer linear programming as applied to scheduling geodetic very-long-baseline interferometry (VLBI) observations. The approach uses combinatorial optimization and formulates the scheduling task as a mixed-integer linear program. Within this new method, the schedule is considered as an entity containing all possible observations of an observing session at the same time, leading to a global optimum. In our example, the optimum is found by maximizing the sky coverage score. The sky coverage score is computed by a hierarchical partitioning of the local sky above each telescope into a number of cells. Each cell including at least one observation adds a certain gain to the score. The method is computationally expensive and this publication may be ahead of its time for large networks and large numbers of VLBI observations. However, considering that developments of solvers for combinatorial optimization are progressing rapidly and that computers increase in performance, the usefulness of this approach may come up again in some distant future. Nevertheless, readers may be prompted to look into these optimization methods already today seeing that they are available also in the geodetic literature. The validity of the concept and the applicability of the logic are demonstrated by evaluating test schedules for five 1-h, single-baseline Intensive VLBI sessions. Compared to schedules that were produced with the scheduling software sked, the number of observations per session is increased on average by three observations and the simulated precision of UT1-UTC is improved in four out of five cases (6 μs average improvement in quadrature). Moreover, a simplified and thus much faster version of the mixed-integer linear program has been developed for modern VLBI Global Observing System telescopes. Numéro de notice : A2020-153 Affiliation des auteurs : non IGN Thématique : MATHEMATIQUE/POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-020-01348-w Date de publication en ligne : 29/01/2020 En ligne : https://doi.org/10.1007/s00190-020-01348-w Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94786
in Journal of geodesy > vol 94 n°2 (February 2020)[article]
Titre : ITRF local tie survey at Saint-John’s, Canada Type de document : Rapport Auteurs : Thomas Donal, Auteur ; Jean-Claude Poyard, Auteur Mention d'édition : version 1 Editeur : Saint-Mandé : Institut national de l'information géographique et forestière - IGN (2012-) Année de publication : 2017 Collection : Publications techniques en géodésie Sous-collection : Rapports techniques num. 28599 Importance : 52 p. Format : 21 x 30 cm Langues : Français (fre) Descripteur : [Vedettes matières IGN] Systèmes de référence et réseaux
[Termes IGN] Canada
[Termes IGN] co-positionnement
[Termes IGN] International Terrestrial Reference Frame
[Termes IGN] marégraphe
[Termes IGN] point de liaison (géodésie)
[Termes IGN] positionnement par DORIS
[Termes IGN] positionnement par GNSS
[Termes IGN] positionnement par ITGBRésumé : (auteur) The ITRF2014 realization (most recent frame of the International Terrestrial Reference System) computed by the ITRS product Centre (Geodesy Research Laboratory at IGN) is the result of the reference frames combination from four space geodesy techniques (i.e. GNSS, DORIS, SLR et VLBI). One way to achieve one common frame consists in adding to the combination results from co-located sites local tie surveys. The magnetic observatory in St. John’s (Canada) is equipped with a DORIS station, several permanent GNSS stations and geodetic marks tied with the former mobile VLBI station. Finally, a tide gauge set a few kilometres apart has been tied. This report describes the local tie survey carried out on July 2013 in St. John’s and the associated results. Note de contenu : 1- Introduction
2- Co-location site description
3- Local tie survey description
4- Computation and data analysis
5- Results
6- AppendicesNuméro de notice : 17563 Affiliation des auteurs : IGN (2012-2019) Thématique : POSITIONNEMENT Nature : Rapport de mission nature-HAL : Rapport DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91688 Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 17563-01 7D Livre SGM K001 Exclu du prêt Documents numériques
peut être téléchargé
ITRF local tie survey at Saint-John’s, Canada - pdf auteurAdobe Acrobat PDF Ionospheric corrections for single-frequency tracking of GNSS satellites by VLBI based on co-located GNSS / Benjamin Männel in Journal of geodesy, vol 90 n° 2 (February 2016)PermalinkPrecise station positions from VLBI observations to satellites: a simulation study / Lucia Plank in Journal of geodesy, vol 88 n° 7 (July 2014)PermalinkEarth orientation parameters estimated from VLBI during the CONT11 campaign / Tobias Nilsson in Journal of geodesy, vol 88 n° 5 (May 2014)PermalinkQuantifying the correlation between the MEI and LOD variations by decomposing LOD with singular spectrum analysis / Karine Le Bail (2014)PermalinkImpact of seasonal station motions on VLBI UT1 intensives results / Zinovy Malkin in Journal of geodesy, vol 87 n° 6 (June 2013)PermalinkVLBI-derived troposphere parameters during CONT08 / Robert Heinkelmann in Journal of geodesy, vol 85 n° 7 (July 2011)PermalinkImproved constraints on models of glacial isostatic adjustment: A review of the contribution of ground-based geodetic observations / Matt A. King in Surveys in Geophysics, vol 31 n° 5 (September 2010)PermalinkThe kinematics of Ny-Ålesund from space geodetic data / Halfdan Pascal Kierulf in Journal of geodynamics, vol 48 n° 1 (July 2009)PermalinkAnalyse des séries temporelles de positions des stations de géodésie spatiale : application au repère international de référence terrestre (ITRF) / Xavier Collilieux (2008)PermalinkStability of VLBI, SLR, DORIS, and GPS positioning / Martine Feissel-Vernier in Earth, Planets and Space, vol 59 n° 6 (June 2007)Permalink