Descripteur
Termes IGN > sciences naturelles > physique > traitement d'image > traitement d'image radar > interféromètrie par radar à antenne synthétique > interferométrie différentielle
interferométrie différentielleSynonyme(s)Interférométrie radar différentielle ;Dinsar D-insar |
Documents disponibles dans cette catégorie (62)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Orbit error removal in InSAR/MTInSAR with a patch-based polynomial model / Yanan Du in International journal of applied Earth observation and geoinformation, vol 102 (October 2021)
[article]
Titre : Orbit error removal in InSAR/MTInSAR with a patch-based polynomial model Type de document : Article/Communication Auteurs : Yanan Du, Auteur ; Hai Qiang Fu, Auteur ; Lin Liu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 102438 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] image ALOS-PALSAR
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-SAR
[Termes IGN] interferométrie différentielle
[Termes IGN] jeu de données
[Termes IGN] modèle d'erreur
[Termes IGN] orbitographie
[Termes IGN] transformation polynomialeRésumé : (auteur) The orbit error caused by the inaccuracy of the orbit state vector can lead to fringes in differential interferograms, which can impede the estimation of deformation in differential SAR interferometry (DInSAR) applications. Usually, a set of polynomial coefficients for an entire SAR image is obtained for orbit error removal. However, the orbit error plane is influenced by overfitting in the case that the SAR satellites do not have a precise orbit. In this paper, a patch-based polynomial method is proposed to fit the orbit error plane. The new method divides an SAR image into several overlapping patches in the azimuth and range directions. Every patch obtains its own polynomial coefficients, and an iterative least-square method is used to mosaic the orbit plane. This method is tested and validated via a simulated dataset and then applied to ALOS1/2 PALSAR and Sentinel-1A datasets. The accuracy of deformation is evaluated by in situ GPS datasets. The results show that the patch-based method can fit the orbit phase plane more accurately than the traditional polynomial model with millimeter-level displacement improvement, especially in the margin areas of ALOS1/2 and for the wide-coverage Sentinel-1A datasets. Moreover, in the MTInSAR parameter calculations, the new method improves the accuracy of mean velocity calculations for ALOS1 time series, with a reduction of RMSE from 4.47 mm/yr to 3.17 mm/yr. Additionally, the new method reduces the spatial correlation of the residual topographic phase, with a mean value reduction from 0.32 m to 0.13 m. Numéro de notice : A2021-687 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.jag.2021.102438 En ligne : https://doi.org/10.1016/j.jag.2021.102438 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98419
in International journal of applied Earth observation and geoinformation > vol 102 (October 2021) . - n° 102438[article]Glacier elevation change in the Western Qilian mountains as observed by TerraSAR-X/TanDEM-X images / Qibing Zhang in Geocarto international, vol 36 n° 12 ([01/07/2021])
[article]
Titre : Glacier elevation change in the Western Qilian mountains as observed by TerraSAR-X/TanDEM-X images Type de document : Article/Communication Auteurs : Qibing Zhang, Auteur ; Shichang Kang, Auteur Année de publication : 2021 Article en page(s) : pp 1365-1377 Note générale : Bibliothèque Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] altitude
[Termes IGN] changement climatique
[Termes IGN] détection de changement
[Termes IGN] glacier
[Termes IGN] interferométrie différentielle
[Termes IGN] Kansou (Chine)
[Termes IGN] MNS TerraSAR & TanDEM-X
[Termes IGN] montagne
[Termes IGN] précipitation
[Termes IGN] température de l'air
[Termes IGN] Tsinghai (Chine)Résumé : (Auteur) The glaciers in the Qilian mountains are a major water resource for the arid Hexi corridor and Qaidam basin. With the climate becoming warmer and wetter, it is essential to study the glacier elevation changes in this region. We used TerraSAR-X/TanDEM-X images, SRTM DEM data and differential synthetic aperture radar interferometry (DInSAR) technology to analyse the glacier elevation change. Results show that the glacier elevation is changing at the rate of –0.35 m yr−1 in the western Qilian mountains between 2000 and 2014. The glacier elevation thinning at –0.40 m yr−1 in the southern part of this region is more severe than that in the northern part (–0.29 m yr−1). The long-term equilibrium line altitude, calculated from glacier elevation change in each elevation bin, was at 5150 m, which is equal to that inferred from glacial area distribution in each elevation bin. Glacier shrinkage is related to air temperature increasing. Numéro de notice : A2021-378 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1648563 Date de publication en ligne : 09/08/2019 En ligne : https://doi.org/10.1080/10106049.2019.1648563 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97876
in Geocarto international > vol 36 n° 12 [01/07/2021] . - pp 1365-1377[article]Mapping precipitable water vapor time series from Sentinel-1 interferometric SAR / Pedro Mateus in IEEE Transactions on geoscience and remote sensing, vol 58 n° 2 (February 2020)
[article]
Titre : Mapping precipitable water vapor time series from Sentinel-1 interferometric SAR Type de document : Article/Communication Auteurs : Pedro Mateus, Auteur ; João Catalão, Auteur ; Giovanni Nico, Auteur ; Pedro Benevides, Auteur Année de publication : 2020 Article en page(s) : pp 1373 - 1379 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] Appalaches
[Termes IGN] cartographie
[Termes IGN] données GNSS
[Termes IGN] image Sentinel-SAR
[Termes IGN] interferométrie différentielle
[Termes IGN] itération
[Termes IGN] méthode des moindres carrés
[Termes IGN] modèle atmosphérique
[Termes IGN] optimisation (mathématiques)
[Termes IGN] phase GNSS
[Termes IGN] prévision météorologique
[Termes IGN] série temporelle
[Termes IGN] vapeur d'eauRésumé : (auteur) In this article, a methodology to retrieve the precipitable water vapor (PWV) from a differential interferometric time series is presented. We used external data provided by atmospheric weather models (e.g., ERA-Interim reanalysis) to constrain the initial state and by Global Navigation Satellite System (GNSS) to phase ambiguities elimination introduced by phase unwrapping algorithm. An iterative least-square is then used to solve the optimization problem. We applied the presented methodology to two time series of differential PWV maps estimated from synthetic aperture radar (SAR) images acquired by the Sentinel-1A, over the southwest part of the Appalachian Mountains (USA). The results were validated using an independent GNSS data set and also compared with atmospheric weather prediction data. The GNSS PWV observations show a strong correlation with the estimated PWV maps with a root-mean-square error less than 1 mm. These results are very encouraging, particularly for the meteorology community, providing crucial information to assimilate into numerical weather models and potentially improve the forecasts. Numéro de notice : A2020-098 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2946077 Date de publication en ligne : 28/10/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2946077 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94672
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 2 (February 2020) . - pp 1373 - 1379[article]Identification of alpine glaciers in the central Himalayas using fully polarimetric L-Band SAR data / Guo-Hui Yao in IEEE Transactions on geoscience and remote sensing, vol 58 n° 1 (January 2020)
[article]
Titre : Identification of alpine glaciers in the central Himalayas using fully polarimetric L-Band SAR data Type de document : Article/Communication Auteurs : Guo-Hui Yao, Auteur ; Chang-qing Ke, Auteur ; Xiaobing Zhou, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 691 - 703 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] analyse multiéchelle
[Termes IGN] bande L
[Termes IGN] classification orientée objet
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] données polarimétriques
[Termes IGN] échantillonnage
[Termes IGN] glacier
[Termes IGN] Himalaya
[Termes IGN] image ALOS-PALSAR
[Termes IGN] image Landsat-OLI
[Termes IGN] image radar moirée
[Termes IGN] interferométrie différentielle
[Termes IGN] matrice de covariance
[Termes IGN] précision de la classification
[Termes IGN] segmentationRésumé : (auteur) To study the applicability of full polarimetric synthetic aperture radar (SAR) data to identify alpine glaciers in the central Himalayas, six polarimetric decomposition methods were used to obtain 20 polarimetric characteristic parameters based on the Advanced Land Observing Satellite 2 (ALOS-2) Phased Array type L-band SAR (PALSAR) data. Object-oriented multiscale segmentation was performed on a Landsat 8 Operational Land Imager (OLI) image prior to classification, and the vector boundaries of different types of training samples were selected from the segmented results. We performed a support vector machine (SVM)-based classification on the characteristic parameters from each polarimetric decomposition. All 20 parameters were then screened and combined according to different requirements: the degree of separability of different types of training samples and the type of scattering mechanisms. The results show that the classification accuracy of the incoherent decomposition characteristics based on the covariance matrix is the best, reaching 87%, and it can exceed 91% after adding the local incidence angle to the suite of classifiers. Eventually, more than 93% accuracy was achieved using a combination of multiple polarimetric parameters, which reduced the misclassification between bare ice and rock. We also analyzed the use of controlling factors on the accuracy of alpine glacier identification and found that the polarimetric information and aspect of the glacier surface are the most important factors. The former is the main basis for identification but the latter will confuse the feature distributions of different categories and cause misclassification. Numéro de notice : A2020-077 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2939430 Date de publication en ligne : 25/09/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2939430 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94613
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 1 (January 2020) . - pp 691 - 703[article]A temporal phase coherence estimation algorithm and its application on DInSAR pixel selection / Feng Zhao in IEEE Transactions on geoscience and remote sensing, vol 57 n° 11 (November 2019)
[article]
Titre : A temporal phase coherence estimation algorithm and its application on DInSAR pixel selection Type de document : Article/Communication Auteurs : Feng Zhao, Auteur ; Jordi J. Mallorquí, Auteur Année de publication : 2019 Article en page(s) : pp 8350 - 8361 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] amplitude
[Termes IGN] Barcelone
[Termes IGN] classification pixellaire
[Termes IGN] cohérence temporelle
[Termes IGN] image radar moirée
[Termes IGN] image Radarsat
[Termes IGN] interferométrie différentielle
[Termes IGN] mesurage de phaseRésumé : (auteur) Pixel selection is a crucial step of all advanced Differential Interferometric Synthetic Aperture Radar (DInSAR) techniques that have a direct impact on the quality of the final DInSAR products. In this paper, a full-resolution phase quality estimator, i.e., the temporal phase coherence (TPC), is proposed for DInSAR pixel selection. The method is able to work with both distributed scatterers (DSs) and permanent scatterers (PSs). The influence of different neighboring window sizes and types of interferograms combinations [both the single-master (SM) and the multi-master (MM)] on TPC has been studied. The relationship between TPC and phase standard deviation (STD) of the selected pixels has also been derived. Together with the classical coherence and amplitude dispersion methods, the TPC pixel selection algorithm has been tested on 37 VV polarization Radarsat-2 images of Barcelona Airport. Results show the feasibility and effectiveness of TPC pixel selection algorithm. Besides obvious improvements in the number of selected pixels, the new method shows some other advantages comparing with the other classical two. The proposed pixel selection algorithm, which presents an affordable computational cost, is easy to be implemented and incorporated into any advanced DInSAR processing chain for high-quality pixels' identification. Numéro de notice : A2019-593 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2920536 Date de publication en ligne : 16/07/2019 En ligne : http://doi.org/10.1109/TGRS.2019.2920536 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94585
in IEEE Transactions on geoscience and remote sensing > vol 57 n° 11 (November 2019) . - pp 8350 - 8361[article]The Parallel SBAS approach for Sentinel-1 interferometric wide swath deformation time-series generation: algorithm description and products quality assessment / Michele Manunta in IEEE Transactions on geoscience and remote sensing, vol 57 n° 9 (September 2019)PermalinkObservation et suivi de déformations de surface d'origine anthropique par interférométrie radar satellitaire / Daniel Raucoules in Revue Française de Photogrammétrie et de Télédétection, n° 219-220 (juin - octobre 2019)PermalinkPrincipes de l'interférométrie d'images radar pour la mesure de la topographie et des déplacements du sol et avancées récentes / Elisabeth Simonetto in Revue Française de Photogrammétrie et de Télédétection, n° 219-220 (juin - octobre 2019)PermalinkAtmospheric artifacts correction with a covariance-weighted linear model over mountainous regions / Zhongbo Hu in IEEE Transactions on geoscience and remote sensing, vol 56 n° 12 (December 2018)PermalinkLong-term land deformation monitoring using quasi-persistent scatterer (Q-PS) technique observed by sentinel-1A : case study Kelok Sembilan / Pakhrur Razi in Advances in Remote Sensing, vol 7 n° 4 (December 2018)PermalinkSeparating the influence of vegetation changes in polarimetric differential SAR interferometry / Virginia Brancato in IEEE Transactions on geoscience and remote sensing, vol 56 n° 12 (December 2018)PermalinkInvestigation of the success of monitoring slow motion landslides using Persistent Scatterer Interferometry and GNSS methods / K.O. Hastaoglu in Survey review, vol 50 n° 363 (September 2018)PermalinkError-regulated multi-pass DInSAR analysis for landslide risk assessment / Jung Rack Kim in Photogrammetric Engineering & Remote Sensing, PERS, vol 84 n° 4 (April 2018)PermalinkEtude préalable à l'installation d'un coin radar sur le site de co-localisation de Calern / Guillaume Schmidt (2018)PermalinkPotential and limits of Sentinel-1 data for small alpine glaciers monitoring / Matthias Jauvin (2018)Permalink