Descripteur
Documents disponibles dans cette catégorie (43)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Investigating the impact of pan sharpening on the accuracy of land cover mapping in Landsat OLI imagery / Komeil Rokni in Geodesy and cartography, vol 49 n° 1 (January 2023)
[article]
Titre : Investigating the impact of pan sharpening on the accuracy of land cover mapping in Landsat OLI imagery Type de document : Article/Communication Auteurs : Komeil Rokni, Auteur Année de publication : 2023 Article en page(s) : pp 12 - 18 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme de Gram-Schmidt
[Termes IGN] carte d'occupation du sol
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] image Landsat-OLI
[Termes IGN] image multibande
[Termes IGN] image panchromatique
[Termes IGN] Kappa de Cohen
[Termes IGN] matrice de confusion
[Termes IGN] pansharpening (fusion d'images)
[Termes IGN] précision de la classificationRésumé : (auteur) Pan Sharpening is normally applied to sharpen a multispectral image with low resolution by using a panchromatic image with a higher resolution, to generate a high resolution multispectral image. The present study aims at assessing the power of Pan Sharpening on improvement of the accuracy of image classification and land cover mapping in Landsat 8 OLI imagery. In this respect, different Pan Sharpening algorithms including Brovey, Gram-Schmidt, NNDiffuse, and Principal Components were applied to merge the Landsat OLI panchromatic band (15 m) with the Landsat OLI multispectral: visible and infrared bands (30 m), to generate a new multispectral image with a higher spatial resolution (15 m). Subsequently, the support vector machine approach was utilized to classify the original Landsat and resulting Pan Sharpened images to generate land cover maps of the study area. The outcomes were then compared through the generation of confusion matrix and calculation of kappa coefficient and overall accuracy. The results indicated superiority of NNDiffuse algorithm in Pan Sharpening and improvement of classification accuracy in Landsat OLI imagery, with an overall accuracy and kappa coefficient of about 98.66% and 0.98, respectively. Furthermore, the result showed that the Gram-Schmidt and Principal Components algorithms also slightly improved the accuracy of image classification compared to original Landsat image. The study concluded that image Pan Sharpening is useful to improve the accuracy of image classification in Landsat OLI imagery, depending on the Pan Sharpening algorithm used for this purpose. Numéro de notice : A2023-142 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3846/gac.2023.15308 Date de publication en ligne : 17/02/2023 En ligne : https://doi.org/10.3846/gac.2023.15308 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102712
in Geodesy and cartography > vol 49 n° 1 (January 2023) . - pp 12 - 18[article]Multi-information PointNet++ fusion method for DEM construction from airborne LiDAR data / Hong Hu in Geocarto international, vol 38 n° 1 ([01/01/2023])
[article]
Titre : Multi-information PointNet++ fusion method for DEM construction from airborne LiDAR data Type de document : Article/Communication Auteurs : Hong Hu, Auteur ; Guanghe Zhang, Auteur ; Jianfeng Ao, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 2153929 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] apprentissage profond
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] filtrage de points
[Termes IGN] image RVB
[Termes IGN] Kappa de Cohen
[Termes IGN] modèle numérique de surface
[Termes IGN] Perceptron multicouche
[Termes IGN] segmentation
[Termes IGN] semis de pointsRésumé : (auteur) Airborne light detection and ranging (LiDAR) is a popular technology in remote sensing that can significantly improve the efficiency of digital elevation model (DEM) construction. However, it is challenging to identify the real terrain features in complex areas using LiDAR data. To solve this problem, this work proposes a multi-information fusion method based on PointNet++ to improve the accuracy of DEM construction. The RGB data and normalized coordinate information of the point cloud was added to increase the number of channels on the input side of the PointNet++ neural network, which can improve the accuracy of the classification during feature extraction. Low and high density point clouds obtained from the International Society for Photogrammetry and Remote Sensing (ISPRS) and the United States Geological Survey (USGS) were used to test this proposed method. The results suggest that the proposed method improves the Kappa coefficient by 8.81% compared to PointNet++. The type I error was reduced by 2.13%, the type II error was reduced by 8.29%, and the total error was reduced by 2.52% compared to the conventional algorithm. Therefore, it is possible to conclude that the proposed method can obtain DEMs with higher accuracy. Numéro de notice : A2023-056 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/10106049.2022.2153929 Date de publication en ligne : 23/12/2022 En ligne : https://doi.org/10.1080/10106049.2022.2153929 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102389
in Geocarto international > vol 38 n° 1 [01/01/2023] . - n° 2153929[article]Graph learning based on signal smoothness representation for homogeneous and heterogeneous change detection / David Alejandro Jimenez-Sierra in IEEE Transactions on geoscience and remote sensing, vol 60 n° 4 (April 2022)
[article]
Titre : Graph learning based on signal smoothness representation for homogeneous and heterogeneous change detection Type de document : Article/Communication Auteurs : David Alejandro Jimenez-Sierra, Auteur ; David Alfredo Quintero-Olaya, Auteur ; Juan Carlos Alvear-Muñoz, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 4410416 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] apprentissage non-dirigé
[Termes IGN] apprentissage profond
[Termes IGN] détection de changement
[Termes IGN] graphe
[Termes IGN] image multibande
[Termes IGN] image radar moirée
[Termes IGN] Kappa de Cohen
[Termes IGN] lissage de données
[Termes IGN] processus gaussien
[Termes IGN] réseau sémantique
[Termes IGN] segmentation d'image
[Termes IGN] seuillage
[Termes IGN] superpixelRésumé : (auteur) Graph-based methods are promising approaches for traditional and modern techniques in change detection (CD) applications. Nonetheless, some graph-based approaches omit the existence of useful priors that account for the structure of a scene, and the inter- and intra-relationships between the pixels are analyzed. To address this issue, in this article, we propose a framework for CD based on graph fusion and driven by graph signal smoothness representation. In addition to modifying the graph learning stage, in the proposed model, we apply a Gaussian mixture model for superpixel segmentation (GMMSP) as a downsampling module to reduce the computational cost required to learn the graph of the entire images. We carry out tests on 14 real cases of natural disasters, farming, and construction. The dataset contains homogeneous cases with multispectral (MS) and synthetic aperture radar (SAR) images, along with heterogeneous cases that include MS/SAR images. We compare our approach against probabilistic thresholding, unsupervised learning, deep learning, and graph-based methods. In terms of Cohen’s kappa coefficient, our proposed model based on graph signal smoothness representation outperformed state-of-the-art approaches in ten out of 14 datasets. Numéro de notice : A2022-379 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2022.3168126 Date de publication en ligne : 18/04/2022 En ligne : https://doi.org/10.1109/TGRS.2022.3168126 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100643
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 4 (April 2022) . - n° 4410416[article]Feasibility of mapping radioactive minerals in high background radiation areas using remote sensing techniques / J.O. Ondieki in International journal of applied Earth observation and geoinformation, vol 107 (March 2022)
[article]
Titre : Feasibility of mapping radioactive minerals in high background radiation areas using remote sensing techniques Type de document : Article/Communication Auteurs : J.O. Ondieki, Auteur ; C.O. Mito, Auteur ; M.I. Kaniu, Auteur Année de publication : 2022 Article en page(s) : n° 102700 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse de groupement
[Termes IGN] carte thématique
[Termes IGN] classification par maximum de vraisemblance
[Termes IGN] données géologiques
[Termes IGN] image Landsat-OLI
[Termes IGN] Kappa de Cohen
[Termes IGN] Kenya
[Termes IGN] minerai
[Termes IGN] pollution radioactive
[Termes IGN] précision de la classification
[Termes IGN] radioactivité
[Termes IGN] signature spectraleRésumé : (auteur) This study investigates the utility of using remote sensing and geographic information system techniques to accurately infer the presence of radioactive minerals in a typical high background radiation area (HBRA) by analyzing spectral signatures of associated soil, rocks and vegetation. To accomplish this, both unsupervised (K-Means Clustering) and supervised classification techniques based on a maximum likelihood classifier (MLC) were applied to Landsat-8 Imager data from Mrima Hill on Kenya's south coast. The hill is surrounded by dense tropical forest and deeply weathered soils which are rich in Nb, Th, and rare earth elements. Due to high activity concentrations of 232Th (>8 times higher than the world average value for soil), the hill has been designated as a geogenic HBRA. Based on the underlying geological formations, four classifications of vegetation and two classifications of soil/rocks were established and used to indicate the presence of radioactive minerals in the area. Measurements of air-absorbed gamma dose-rates in the area were successfully used to validate these findings. The application of the MLC method on Landsat satellite data shows that this method can be used as a powerful tool to explore and improve radioactive minerals mapping in HBRAs, the overall classification accuracy of Landsat8 OLI data using botanical technique is 80% and the Kappa Coefficient is 0.6. The overall classification accuracy using soil/rocks spectral signatures is 91% and the Kappa Coefficient is 0.7. Finally, the study demonstrated the general utility of remote sensing techniques in radioactive mineral surveys as well as environmental radiological assessments, particularly in resource-constrained settings. Numéro de notice : A2022-194 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.102700 Date de publication en ligne : 02/02/2022 En ligne : https://doi.org/10.1016/j.jag.2022.102700 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99956
in International journal of applied Earth observation and geoinformation > vol 107 (March 2022) . - n° 102700[article]Gaussian mixture model of ground filtering based on hierarchical curvature constraints for airborne Lidar point clouds / Longjie Ye in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 9 (September 2021)
[article]
Titre : Gaussian mixture model of ground filtering based on hierarchical curvature constraints for airborne Lidar point clouds Type de document : Article/Communication Auteurs : Longjie Ye, Auteur ; Ka Zhang, Auteur ; Wen Xiao, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 615 - 630 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] algorithme de filtrage
[Termes IGN] classification barycentrique
[Termes IGN] courbure
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] fonction spline d'interpolation
[Termes IGN] Kappa de Cohen
[Termes IGN] lasergrammétrie
[Termes IGN] modèle numérique de terrain
[Termes IGN] processus gaussien
[Termes IGN] semis de pointsRésumé : (Auteur) This paper proposes a Gaussian mixture model of a ground filtering method based on hierarchical curvature constraints. Firstly, the thin plate spline function is iteratively applied to interpolate the reference surface. Secondly, gradually changing grid size and curvature threshold are used to construct hierarchical constraints. Finally, an adaptive height difference classifier based on the Gaussian mixture model is proposed. Using the latent variables obtained by the expectation-maximization algorithm, the posterior probability of each point is computed. As a result, ground and objects can be marked separately according to the calculated possibility. 15 data samples provided by the International Society for Photogrammetry and Remote Sensing are used to verify the proposed method, which is also compared with eight classical filtering algorithms. Experimental results demonstrate that the average total errors and average Cohen's kappa coefficient of the proposed method are 6.91% and 80.9%, respectively. In general, it has better performance in areas with terrain discontinuities and bridges. Numéro de notice : A2021-671 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.87.20-00080 Date de publication en ligne : 01/09/2021 En ligne : https://doi.org/10.14358/PERS.87.20-00080 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98820
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 9 (September 2021) . - pp 615 - 630[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2021091 SL Revue Centre de documentation Revues en salle Disponible An adaptive filtering algorithm of multilevel resolution point cloud / Youyuan Li in Survey review, Vol 53 n° 379 (July 2021)PermalinkA high-resolution satellite DEM filtering method assisted with building segmentation / Yihui Li in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 6 (June 2021)PermalinkA water identification method basing on grayscale Landsat 8 OLI images / Zhitian Deng in Geocarto international, vol 35 n° 7 ([15/05/2020])PermalinkA review of assessment methods for cellular automata models of land-use change and urban growth / Xiaohua Tong in International journal of geographical information science IJGIS, vol 34 n° 5 (May 2020)PermalinkAn approach for establishing correspondence between OpenStreetMap and reference datasets for land use and land cover mapping / Qi Zhou in Transactions in GIS, Vol 23 n° 6 (November 2019)PermalinkA machine learning approach to detect crude oil contamination in a real scenario using hyperspectral remote sensing / Ran Pelta in International journal of applied Earth observation and geoinformation, vol 82 (October 2019)PermalinkSimulation of urban expansion via integrating artificial neural network with Markov chain – cellular automata / Tingting Xu in International journal of geographical information science IJGIS, vol 33 n° 10 (October 2019)PermalinkUnmanned aerial vehicles (UAVs) for monitoring macroalgal biodiversity: comparison of RGB and multispectral imaging sensors for biodiversity assessments / Leigh Tait in Remote sensing, vol 11 n° 19 (October-1 2019)PermalinkDetecting newly grown tree leaves from unmanned-aerial-vehicle images using hyperspectral target detection techniques / Chinsu Lin in ISPRS Journal of photogrammetry and remote sensing, vol 142 (August 2018)PermalinkTemporal accuracy in urban growth forecasting : a study using the SLEUTH model / Gargi Chaudhuri in Transactions in GIS, vol 18 n° 2 (April 2014)Permalink