Descripteur
Termes IGN > environnement > écologie > écosystème > biotope > milieu naturel > zone humide
zone humideVoir aussi |
Documents disponibles dans cette catégorie (205)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
A deep learning framework based on generative adversarial networks and vision transformer for complex wetland classification using limited training samples / Ali Jamali in International journal of applied Earth observation and geoinformation, vol 115 (December 2022)
[article]
Titre : A deep learning framework based on generative adversarial networks and vision transformer for complex wetland classification using limited training samples Type de document : Article/Communication Auteurs : Ali Jamali, Auteur ; Masoud Mahdianpari, Auteur ; fariba Mohammadimanesh, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 103095 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage profond
[Termes IGN] Canada
[Termes IGN] carte thématique
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] réseau antagoniste génératif
[Termes IGN] zone humideRésumé : (auteur) Wetlands have long been recognized among the most critical ecosystems globally, yet their numbers quickly diminish due to human activities and climate change. Thus, large-scale wetland monitoring is essential to provide efficient spatial and temporal insights for resource management and conservation plans. However, the main challenge is the lack of enough reference data for accurate large-scale wetland mapping. As such, the main objective of this study was to investigate the efficient deep-learning models for generating high-resolution and temporally rich training datasets for wetland mapping. The Sentinel-1 and Sentinel-2 satellites from the European Copernicus program deliver radar and optical data at a high temporal and spatial resolution. These Earth observations provide a unique source of information for more precise wetland mapping from space. The second objective was to investigate the efficiency of vision transformers for complex landscape mapping. As such, we proposed a 3D Generative Adversarial Network (3D GAN) to best achieve these two objectives of synthesizing training data and a Vision Transformer model for large-scale wetland classification. The proposed approach was tested in three different study areas of Saint John, Sussex, and Fredericton, New Brunswick, Canada. The results showed the ability of the 3D GAN to stimulate and increase the number of training data and, as a result, increase the accuracy of wetland classification. The quantitative results also demonstrated the capability of jointly using data augmentation, 3D GAN, and Vision Transformer models with overall accuracy, average accuracy, and Kappa index of 75.61%, 73.4%, and 71.87%, respectively, using a disjoint data sampling strategy. Therefore, the proposed deep learning method opens a new window for large-scale remote sensing wetland classification. Numéro de notice : A2022-828 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.103095 Date de publication en ligne : 08/11/2022 En ligne : https://doi.org/10.1016/j.jag.2022.103095 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102012
in International journal of applied Earth observation and geoinformation > vol 115 (December 2022) . - n° 103095[article]Fusion of SAR and multi-spectral time series for determination of water table depth and lake area in peatlands / Katrin Krzepek in PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, vol 90 n° 6 (December 2022)
[article]
Titre : Fusion of SAR and multi-spectral time series for determination of water table depth and lake area in peatlands Type de document : Article/Communication Auteurs : Katrin Krzepek, Auteur ; Jacob Schmidt, Auteur ; Dorota Iwaszczuk, Auteur Année de publication : 2022 Article en page(s) : pp 561 - 575 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] apprentissage non-dirigé
[Termes IGN] aquifère
[Termes IGN] Bade-Wurtemberg (Allemagne)
[Termes IGN] bande C
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] fusion d'images
[Termes IGN] image multibande
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] Normalized Difference Water Index
[Termes IGN] puits de carbone
[Termes IGN] seuillage d'image
[Termes IGN] théorie de Dempster-Shafer
[Termes IGN] tourbièreRésumé : (auteur) Peatlands as natural carbon sinks have a major impact on the climate balance and should therefore be monitored and protected. The hydrology of the peatland serves as an indicator of the carbon storage capacity. Hence, we investigate the question how suitable different remote sensing data are for monitoring the size of open water surface and the water table depth (WTD) of a peatland ecosystem. Furthermore, we examine the potential of combining remote sensing data for this purpose. We use C-band synthetic aperture radar (SAR) data from Sentinel-1 and multi-spectral data from Sentinel-2. The radar backscatter σ0, the normalized difference water index (NDWI) and the modified normalized difference water index (MNDWI) are calculated and used for consideration of the WTD and the lake size. For the measurement of the lake size, we implement and investigate the methods: random forest, adaptive thresholding and an analysis according to the Dempster–Shafer theory. Correlations between WTD and the remote sensing data σ0 as well as NDWI are investigated. When looking at the individual data sets the results of our case study show that the VH polarized σ0 data produces the clearest delineation of the peatland lake. However the adaptive thresholding of the weighted fusion image of σ0-VH, σ0-VV and MNDWI, and the random forest algorithm with all three data sets as input proves to be the most suitable for determining the lake area. The correlation coefficients between σ0/NDWI and WTD vary greatly and lie in ranges of low to moderate correlation. Numéro de notice : A2022-942 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s41064-022-00216-w Date de publication en ligne : 06/09/2022 En ligne : https://doi.org/10.1007/s41064-022-00216-w Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102876
in PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science > vol 90 n° 6 (December 2022) . - pp 561 - 575[article]Urban wetland fragmentation and ecosystem service assessment using integrated machine learning algorithm and spatial landscape analysis / Das Subhasis in Geocarto international, vol 37 n° 25 ([01/12/2022])
[article]
Titre : Urban wetland fragmentation and ecosystem service assessment using integrated machine learning algorithm and spatial landscape analysis Type de document : Article/Communication Auteurs : Das Subhasis, Auteur ; Partha Pratim Adhikary, Auteur ; Pravat Kumar Shit, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 7800 - 7818 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie thématique
[Termes IGN] analyse du paysage
[Termes IGN] analyse spatiale
[Termes IGN] apprentissage automatique
[Termes IGN] Calcutta
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] image Landsat-ETM+
[Termes IGN] image Landsat-OLI
[Termes IGN] image Landsat-TM
[Termes IGN] Inde
[Termes IGN] occupation du sol
[Termes IGN] QGIS
[Termes IGN] régression multiple
[Termes IGN] service écosystémique
[Termes IGN] zone humide
[Termes IGN] zone urbaineRésumé : (auteur) Dynamics of ecosystem service value (ESV) of various wetlands has been assessed by researchers globally. But the impact of spatio-temporal variation of landscape metrics on ESV in the lower Gangetic plains has not been examined, fully. The present work has established linkages between landscape metrics and ESV in Kolkata urban agglomeration using support vector machine and multivariate regression analysis. Result indicates that wetland area has been reduced by 5.26%, 13.67% and 9.03% during the periods 1990–2000, 2000–2010 and 2010–2020, respectively and the ESV contributed by wetlands has been decreased by $131428, $323674 and $184649, respectively during the same period at an annual rate of 0.85%. Number of patches, mean patch area and edge density are the main determinants of wetland fragmentation and decreased by 44.12%, 10.23% and 8.65%, respectively during the last three decades. A wetland restoration strategy based on dynamic restoration, reactive restoration and wetland creation for the study area has been formulated, which can guide for sustainable management of wetland resources in Kolkata urban agglomeration. Numéro de notice : A2022-930 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article DOI : 10.1080/10106049.2021.1985174 Date de publication en ligne : 03/11/2021 En ligne : https://doi.org/10.1080/10106049.2021.1985174 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102665
in Geocarto international > vol 37 n° 25 [01/12/2022] . - pp 7800 - 7818[article]Beyond topo-climatic predictors: Does habitats distribution and remote sensing information improve predictions of species distribution models? / Arthur Sanguet in Global ecology and conservation, vol 39 (November 2022)
[article]
Titre : Beyond topo-climatic predictors: Does habitats distribution and remote sensing information improve predictions of species distribution models? Type de document : Article/Communication Auteurs : Arthur Sanguet, Auteur ; Nicolas Wyler, Auteur ; Blaise Petitpierre, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° e02286 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] carte d'occupation du sol
[Termes IGN] changement climatique
[Termes IGN] distribution spatiale
[Termes IGN] échantillonnage de données
[Termes IGN] habitat (nature)
[Termes IGN] modèle de simulation
[Termes IGN] montagne
[Termes IGN] pédologie locale
[Termes IGN] Suisse
[Termes IGN] télédétection
[Termes IGN] topographie locale
[Termes IGN] zone humide
[Vedettes matières IGN] Ecologie forestièreRésumé : (auteur) Species Distribution Models (SDM) represent a powerful tool to predict species’ habitat suitability on a landscape and fill the gap between truncated observation data and all possible locations. SDMs have been widely used in theoretical studies of species niches as well as in conservation applications. Here, we evaluated the impacts of predictors’ type on models’ performances and spatial predictions using 72 plant species belonging to six ecological groups at a regional scale in the area of Geneva (Switzerland). Twelve models were created using various combinations of high-resolution (25 m) explanatory variables including topography, pedology, climate, habitats and remote sensing data. Models integrating a combination of habitats and topopedo-climatic predictors had significantly higher performances, while remote sensing predictors showed low performances. Our results suggest that the number and the level of details of habitat predictors (broad or very precise) do not fundamentally affect prediction maps. However, selecting too few, overly simplified or exceedingly complex habitat predictors tend to lower models’ performances. The use of eight habitat categories complemented with eight topopedo-climatic predictors produced models with the highest performances. Ecological groups of species responded differently to models and while alpine and ruderal species have greater average performances due to a high affinity with topopedo-climatic predictors, wetlands’ species were less performant on average. These results underline the necessity of developing or having access to habitats distribution data especially in a conservation context. Numéro de notice : A2022-815 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/FORET Nature : Article DOI : 10.1016/j.gecco.2022.e02286 Date de publication en ligne : 13/09/2022 En ligne : https://doi.org/10.1016/j.gecco.2022.e02286 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101977
in Global ecology and conservation > vol 39 (November 2022) . - n° e02286[article]Heat wave-induced augmentation of surface urban heat islands strongly regulated by rural background / Shiqi Miao in Sustainable Cities and Society, vol 82 (July 2022)
[article]
Titre : Heat wave-induced augmentation of surface urban heat islands strongly regulated by rural background Type de document : Article/Communication Auteurs : Shiqi Miao, Auteur ; Wenfeng Zhan, Auteur ; Jiameng Lai, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 103874 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] changement climatique
[Termes IGN] Chine
[Termes IGN] climat tropical
[Termes IGN] couvert végétal
[Termes IGN] densité de la végétation
[Termes IGN] données environnementales
[Termes IGN] forêt
[Termes IGN] humidité de l'air
[Termes IGN] ilot thermique urbain
[Termes IGN] image Terra-MODIS
[Termes IGN] nuit
[Termes IGN] température au sol
[Termes IGN] zone humide
[Termes IGN] zone ruraleRésumé : (auteur) The impact of heat waves (HWs) on surface urban heat islands (SUHIs) has been widely studied, but the spatial pattern of SUHI responsiveness to HWs across various climates remains unclear, and the influence of HW intensity on SUHI responsiveness has not been systematically quantified. Using MODIS land surface temperature data, here we investigated the responsiveness of SUHI to HWs (quantified as ∆I) as well as its variations with HW intensity in 354 cities in seven climate zones across China. We find that during HW periods, the SUHI and surface urban cool island are augmented in the humid and arid regions of China, respectively. The inter-city heterogeneity in rural vegetation coverage accounts for such a spatial pattern. In eastern China, the ∆I peaks in the north subtropical climate (0.72 ± 0.54 K for daytime and 0.29 ± 0.23 K for the nighttime) probably for its specific rural farming method. With the intensification of HWs, the augmentation effect can be further enhanced for the north subtropical, warm temperate, and arid temperate climates during the day and for almost all the climates at night. These findings can help advance the understanding of the responsiveness of SUHI to extreme climatic events. Numéro de notice : A2022-375 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.scs.2022.103874 Date de publication en ligne : 13/04/2022 En ligne : https://doi.org/10.1016/j.scs.2022.103874 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100624
in Sustainable Cities and Society > vol 82 (July 2022) . - n° 103874[article]The integration of multi-source remotely sensed data with hierarchically based classification approaches in support of the classification of wetlands / Aaron Judah in Canadian journal of remote sensing, vol 48 n° 2 (April 2022)PermalinkNon-linear GNSS signal processing applied to land observation with high-rate airborne reflectometry / Hamza Issa (2022)PermalinkAge-dependence of stand biomass in managed boreal forests based on the Finnish National Forest Inventory data / Anna Repo in Forest ecology and management, vol 498 (October-15 2021)PermalinkAutomatic detection of inland water bodies along altimetry tracks for estimating surface water storage variations in the Congo basin / Frédéric Frappart in Remote sensing, vol 13 n° 19 (October-1 2021)PermalinkApplication of feature selection methods and machine learning algorithms for saltmarsh biomass estimation using Worldview-2 imagery / Sikdar M. M. Rasel in Geocarto international, vol 36 n° 10 ([01/06/2021])PermalinkIdentifying the effects of chronic saltwater intrusion in coastal floodplain swamps using remote sensing / Elliott White Jr in Remote sensing of environment, vol 258 (June 2021)PermalinkA GIS- and AHP-based approach to map fire risk: a case study of Kuan Kreng peat swamp forest, Thailand / Narissara Nuthammachot in Geocarto international, vol 36 n° 2 ([01/02/2021])PermalinkDrought propagation and its impact on groundwater hydrology of wetlands: a case study on the Doode Bemde nature reserve (Belgium) / Buruk Kitachew Wossenyeleh in Natural Hazards and Earth System Sciences, vol 21 n° 1 (January 2021)PermalinkPermalinkPermalink