Détail de l'auteur
Auteur António Ferraz
Commentaire :
Autorités liées :
idHAL :
pas d'identifiant
idRef :
autre URL :
ORCID :
|
Documents disponibles écrits par cet auteur (21)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Forest degradation and biomass loss along the Chocó region of Colombia / Victoria Meyer in Carbon Balance and Management, vol 14 (March 2019)
[article]
Titre : Forest degradation and biomass loss along the Chocó region of Colombia Type de document : Article/Communication Auteurs : Victoria Meyer, Auteur ; Sassan Saatchi, Auteur ; António Ferraz , Auteur ; Liang Xu, Auteur ; Duque Alvaro, Auteur ; Mariano Garcia, Auteur ; Mariano Chave, Auteur Année de publication : 2019 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage automatique
[Termes IGN] biomasse aérienne
[Termes IGN] canopée
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] Colombie
[Termes IGN] densité du bois
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] dynamique de la végétation
[Termes IGN] dynamique spatiale
[Termes IGN] forêt tropicale
[Termes IGN] hauteur de la végétation
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] semis de pointsRésumé : (auteur) Background: Wet tropical forests of Chocó, along the Pacific Coast of Colombia, are known for their high plant diversity and endemic species. With increasing pressure of degradation and deforestation, these forests have been prioritized for conservation and carbon offset through Reducing Emissions from Deforestation and forest Degradation (REDD+) mechanisms. We provide the first regional assessment of forest structure and aboveground biomass using measurements from a combination of ground tree inventories and airborne Light Detection and Ranging (Lidar). More than 80,000 ha of lidar samples were collected based on a stratified random sampling to provide a regionally unbiased quantification of forest structure of Chocó across gradients of vegetation structure, disturbance and elevation. We developed a model to convert measurements of vertical structure of forests into aboveground biomass (AGB) for terra firme, wetlands, and mangrove forests. We used the Random Forest machine learning model and a formal uncertainty analysis to map forest height and AGB at 1-ha spatial resolution for the entire pacific coastal region using spaceborne data, extending from the coast to higher elevation of Andean forests.
Results: Upland Chocó forests have a mean canopy height of 21.8 m and AGB of 233.0 Mg/ha, while wetland forests are characterized by a lower height and AGB (13.5 m and 117.5 Mg/a). Mangroves have a lower mean height than upland forests (16.5 m), but have a similar AGB as upland forests (229.9 Mg/ha) due to their high wood density. Within the terra firme forest class, intact forests have the highest AGB (244.3 ± 34.8 Mg/ha) followed by degraded and secondary forests with 212.57 ± 62.40 Mg/ha of biomass. Forest degradation varies in biomass loss from small-scale selective logging and firewood harvesting to large-scale tree removals for gold mining, settlements, and illegal logging. Our findings suggest that the forest degradation has already caused the loss of more than 115 million tons of dry biomass, or 58 million tons of carbon.
Conclusions: Our assessment of carbon stocks and forest degradation can be used as a reference for reporting on the state of the Chocó forests to REDD+ projects and to encourage restoration efforts through conservation and climate mitigation policies.Numéro de notice : A2019-625 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1186/s13021-019-0117-9 Date de publication en ligne : 23/03/2019 En ligne : https://doi.org/10.1186/s13021-019-0117-9 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95368
in Carbon Balance and Management > vol 14 (March 2019)[article]Lidar detection of individual tree size in tropical forests / António Ferraz in Remote sensing of environment, vol 183 (15 September 2016)
[article]
Titre : Lidar detection of individual tree size in tropical forests Type de document : Article/Communication Auteurs : António Ferraz , Auteur ; Sassan Saatchi, Auteur ; Clément Mallet , Auteur ; Victoria Meyer, Auteur Année de publication : 2016 Projets : 1-Pas de projet / Article en page(s) : pp 318 - 333 Note générale : Bibliographie
António Ferraz's research was supported by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, administrated by Oak Ridge Associated Universities under contract with NASA(grant number NNH15CO48B).Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] allométrie
[Termes IGN] arbre (flore)
[Termes IGN] biomasse aérienne
[Termes IGN] biomasse forestière
[Termes IGN] canopée
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] forêt tropicale
[Termes IGN] hauteur des arbres
[Termes IGN] houppier
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] Panama
[Termes IGN] semis de points
[Termes IGN] télédétection aérienneRésumé : (Auteur) Characterization of tropical forest trees has been limited to field-based techniques focused on measurement of diameter of the cylindrical part of the bole, with large uncertainty in measuring large trees with irregular shapes, and other size attributes such as total tree height and the crown size. Here, we introduce a methodology to decompose lidar point cloud data into 3D clusters corresponding to individual tree crowns (ITC) that enables the estimation of many biophysical variables of tropical forests such as tree height, crown area, crown volume, and tree number density. The ITC-based approach was tested using airborne high-resolution lidar data collected over the 50-ha Center for Tropical Forest Science (CTFS) plot in the Barro Colorado Island, Panama. The lack of tree height and crown size measurements in the field prohibits the direct validation of the ITC metrics. We assess the reliability of our method by comparing the aboveground biomass (AGB) estimated using ground and lidar individual tree measurements at multiple spatial scales, namely 1ha, 2.25 ha, 4ha, and 6.25 ha. We examined four different lidar-derived AGB models, with three based on individual tree height, crown volume, and crown area, and one with mean top canopy height (TCH) calculated at the plot level using the lidar canopy height model. Results show that the predictive power of all models based on ITC size and TCH increases with decreasing spatial resolution from16.9% at 1ha for the worst model to 5.0% at 6.25ha for the best model. The TCH-based model performed slightly better than ITC-based models except at higher spatial scales (~4 ha) and when errors due to edge effects associated with tree crowns were reduced. Unlike the TCH models that change regionally depending on forest type and structure allometry, the ITC-based models are derived as a function of individual tree allometry and can be extended globally to all tropical forests. The method for lidar detection of individual crown size overcome some limitations of ground-based inventories such as 1) it is able to access crowns of large trees and 2) it enables the assessment of directional changes in tree density, canopy architecture and forest dynamics over large and inaccessible areas to support robust tropical ecological studies. Numéro de notice : A2016--103 Affiliation des auteurs : LASTIG MATIS+Ext (2012-2019) Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.rse.2016.05.028 Date de publication en ligne : 21/06/2016 En ligne : http://doi.org/10.1016/j.rse.2016.05.028 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=84669
in Remote sensing of environment > vol 183 (15 September 2016) . - pp 318 - 333[article]International benchmarking of the individual tree detection methods for modeling 3-D canopy structure for silviculture and forest ecology using airborne laser scanning / Yunsheng Wang in IEEE Transactions on geoscience and remote sensing, vol 54 n° 9 (September 2016)
[article]
Titre : International benchmarking of the individual tree detection methods for modeling 3-D canopy structure for silviculture and forest ecology using airborne laser scanning Type de document : Article/Communication Auteurs : Yunsheng Wang, Auteur ; Juha Hyyppä, Auteur ; Xinlian Liang, Auteur ; et al., Auteur ; Clément Mallet , Auteur ; António Ferraz , Auteur Année de publication : 2016 Projets : 1-Pas de projet / Article en page(s) : pp 5011 - 5027 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] arbre (flore)
[Termes IGN] canopée
[Termes IGN] densité des points
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction de la végétation
[Termes IGN] lasergrammétrie
[Termes IGN] longueur d'onde
[Termes IGN] modélisation 3D
[Termes IGN] reconstruction 3D
[Termes IGN] semis de pointsRésumé : (Auteur) Canopy structure plays an essential role in biophysical activities in forest environments. However, quantitative descriptions of a 3-D canopy structure are extremely difficult because of the complexity and heterogeneity of forest systems. Airborne laser scanning (ALS) provides an opportunity to automatically measure a 3-D canopy structure in large areas. Compared with other point cloud technologies such as the image-based Structure from Motion, the power of ALS lies in its ability to penetrate canopies and depict subordinate trees. However, such capabilities have been poorly explored so far. In this paper, the potential of ALS-based approaches in depicting a 3-D canopy structure is explored in detail through an international benchmarking of five recently developed ALS-based individual tree detection (ITD) methods. For the first time, the results of the ITD methods are evaluated for each of four crown classes, i.e., dominant, codominant, intermediate, and suppressed trees, which provides insight toward understanding the current status of depicting a 3-D canopy structure using ITD methods, particularly with respect to their performances, potential, and challenges. This benchmarking study revealed that the canopy structure plays a considerable role in the detection accuracy of ITD methods, and its influence is even greater than that of the tree species as well as the species composition in a stand. The study also reveals the importance of utilizing the point cloud data for the detection of intermediate and suppressed trees. Different from what has been reported in previous studies, point density was found to be a highly influential factor in the performance of the methods that use point cloud data. Greater efforts should be invested in the point-based or hybrid ITD approaches to model the 3-D canopy structure and to further explore the potential of high-density and multiwavelengths ALS data. Numéro de notice : A2016-893 Affiliation des auteurs : LASTIG MATIS+Ext (2012-2019) Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2543225 Date de publication en ligne : 16/06/2016 En ligne : https://helda.helsinki.fi/bitstream/handle/10138/224961/080MML16.pdf;jsessionid= [...] Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83073
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 9 (September 2016) . - pp 5011 - 5027[article]Documents numériques
Airborne lidar estimation of aboveground forest biomass in the absence of field inventory / António Ferraz in Remote sensing, vol 8 n° 8 (August 2016)
[article]
Titre : Airborne lidar estimation of aboveground forest biomass in the absence of field inventory Type de document : Article/Communication Auteurs : António Ferraz , Auteur ; Sassan Saatchi, Auteur ; Clément Mallet , Auteur ; Stéphane Jacquemoud, Auteur ; Gil Rito-Gonçalves , Auteur ; Carlos Alberto Silva, Auteur ; Paola Soares, Auteur ; Margarida Tomé, Auteur ; Luisa Pereira, Auteur Année de publication : 2016 Projets : 3-projet - voir note / Article en page(s) : pp 1 - 18 Note générale : Bibliographie
This work was supported in part by the Portuguese Foundation for Science and Technology under Grant PTDC/AGR-CFL/72380/2006, co-financed by the European Fund of Regional Development (FEDER) through COMPETE—Operational Factors of Competitiveness Program (POFC) and the Grant Pest-OE/EEI/UI308/2014Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] allométrie
[Termes IGN] analyse de groupement
[Termes IGN] biomasse aérienne
[Termes IGN] biomasse forestière
[Termes IGN] classification automatique d'objets
[Termes IGN] couvert végétal
[Termes IGN] dendrométrie
[Termes IGN] données lidar
[Termes IGN] extraction d'arbres
[Termes IGN] fiabilité des données
[Termes IGN] houppier
[Termes IGN] Portugal
[Termes IGN] puits de carbone
[Termes IGN] semis de points
[Termes IGN] structure d'un peuplement forestierRésumé : (Auteur) The scientific community involved in the UN-REDD program is still reporting large uncertainties about the amount and spatial variability of CO2 stored in forests. The main limitation has been the lack of field samplings over space and time needed to calibrate and convert remote sensing measurements into aboveground biomass (AGB). As an alternative to costly field inventories, we examine the reliability of state-of-the-art lidar methods to provide direct retrieval of many forest metrics that are commonly collected through field sampling techniques (e.g., tree density, individual tree height, crown cover). AGB is estimated using existing allometric equations that are fed by lidar-derived metrics at either the individual tree- or forest layer-level (for the overstory or underneath layers, respectively). Results over 40 plots of a multilayered forest located in northwest Portugal show that the lidar method provides AGB estimates with a relatively small random error (RMSE = of 17.1%) and bias (of 4.6%). It provides local AGB baselines that meet the requirements in terms of accuracy to calibrate satellite remote sensing measurements (e.g., the upcoming lidar GEDI (Global Ecosystem Dynamics Investigation), and the Synthetic Aperture Radar (SAR) missions NISAR (National Aeronautics and Space Administration and Indian Space Research Organization SAR) and BIOMASS from the European Space Agency, ESA) for AGB mapping purposes. The development of similar techniques over a variety of forest types would be a significant improvement in quantifying CO2 stocks and changes to comply with the UN-REDD policies. Numéro de notice : A2016--104 Affiliation des auteurs : LASTIG MATIS+Ext (2012-2019) Autre URL associée : vers HAL Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs8080653 Date de publication en ligne : 12/08/2016 En ligne : https://doi.org/10.3390/rs8080653 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=84675
in Remote sensing > vol 8 n° 8 (August 2016) . - pp 1 - 18[article]Documents numériques
en open access
A2016--104_Airborne_lidar_estimation_of_aboveground_forest_biomassAdobe Acrobat PDF Large-scale road detection in forested mountainous areas using airborne topographic lidar data / António Ferraz in ISPRS Journal of photogrammetry and remote sensing, vol 112 (February 2016)
[article]
Titre : Large-scale road detection in forested mountainous areas using airborne topographic lidar data Type de document : Article/Communication Auteurs : António Ferraz , Auteur ; Clément Mallet , Auteur ; Nesrine Chehata , Auteur Année de publication : 2016 Projets : FORESEE / Bigot-de-Morogues, Francis Article en page(s) : pp 23 - 36 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse d'image orientée objet
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données lidar
[Termes IGN] extraction du réseau routier
[Termes IGN] MNS lidar
[Termes IGN] modèle numérique de surface
[Termes IGN] montagne
[Termes IGN] semis de pointsRésumé : (auteur) In forested mountainous areas, the road location and characterization are invaluable inputs for various purposes such as forest management, wood harvesting industry, wildfire protection and fighting. Airborne topographic lidar has become an established technique to characterize the Earth surface. Lidar provides 3D point clouds allowing for fine reconstruction of ground topography while preserving high frequencies of the relief: fine Digital Terrain Models (DTMs) is the key product.
This paper addresses the problem of road detection and characterization in forested environments over large scales (>1000 km2). For that purpose, an efficient pipeline is proposed, which assumes that main forest roads can be modeled as planar elongated features in the road direction with relief variation in orthogonal direction. DTMs are the only input and no complex 3D point cloud processing methods are involved. First, a restricted but carefully designed set of morphological features is defined as input for a supervised Random Forest classification of potential road patches. Then, a graph is built over these candidate regions: vertices are selected using stochastic geometry tools and edges are created in order to fill gaps in the DTM created by vegetation occlusion. The graph is pruned using morphological criteria derived from the input road model. Finally, once the road is located in 2D, its width and slope are retrieved using an object-based image analysis. We demonstrate that our road model is valid for most forest roads and that roads are correctly retrieved (>80%) with few erroneously detected pathways (10–15%) using fully automatic methods. The full pipeline takes less than 2 min per km2 and higher planimetric accuracy than 2D existing topographic databases are achieved. Compared to these databases, additional roads can be detected with the ability of lidar sensors to penetrate the understory. In case of very dense vegetation and insufficient relief in the DTM, gaps may exist in the results resulting in local incompleteness (∼15%).Numéro de notice : A2016-137 Affiliation des auteurs : LASTIG MATIS+Ext (2012-2019) Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2015.12.002 Date de publication en ligne : 29/12/2015 En ligne : https://doi.org/10.1016/j.isprsjprs.2015.12.002 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=80309
in ISPRS Journal of photogrammetry and remote sensing > vol 112 (February 2016) . - pp 23 - 36[article]Détection à haute résolution spatiale de la desserte forestière en milieu montagneux par lidar aéroporté / Clément Mallet in Forêt entreprise, n° 226 (janvier/février 2016)PermalinkCanopy density model: A new ALS-derived product to generate multilayer crown cover maps / António Ferraz in IEEE Transactions on geoscience and remote sensing, vol 53 n° 12 (December 2015)PermalinkDétection à haute résolution spatiale de la desserte forestière en milieu montagneux / António Ferraz in Revue Française de Photogrammétrie et de Télédétection, n° 211 - 212 (juillet - décembre 2015)PermalinkTropical forest structure characterization using airborne lidar data: an individual tree level approach / António Ferraz (dec 2015)PermalinkEstimation de la biomasse aérienne à partir de données lidar aéroporté / António Ferraz in Revue Française de Photogrammétrie et de Télédétection, n° 205 (Janvier 2014)PermalinkIndividual tree segmentation over large areas using airborne LiDAR point cloud and very high resolution optical imagery / Yuchu Qin (2014)PermalinkLarge scale road network extraction in forested moutainous areas using airborne laser scanning data / António Ferraz (2014)PermalinkLarge-scale classification of water areas using airborne topographic lidar data / Julien Smeeckaert in Remote sensing of environment, vol 138 (November 2013)PermalinkLarge-scale water classification of coastal areas using airborne topographic lidar data / Julien Smeeckaert (juillet 2013)PermalinkSingle strata canopy cover estimation using airborne laser scanning data / António Ferraz (juillet 2013)Permalink
PostDoc de 2012 à 2014 au MATIS