Descripteur
Termes IGN > informatique > langage de programmation > langage à objets > Python (langage de programmation)
Python (langage de programmation)Voir aussi |
Documents disponibles dans cette catégorie (117)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Implementation of a service solution to automate the storage and retrieval of satellite data used by Geotree / Maeve Blarel (2023)
Titre : Implementation of a service solution to automate the storage and retrieval of satellite data used by Geotree : Scaling and refining Earth Observation data processing for nature-based solutions development Type de document : Mémoire Auteurs : Maeve Blarel, Auteur Editeur : Champs-sur-Marne : Ecole nationale des sciences géographiques ENSG Année de publication : 2023 Importance : 97 p. Format : 21 x 30 cm Note générale : bibliographie
Rapport de fin d'étude, cycle des Ingénieurs diplômés de l’ENSG 3ème année, Spécialité TSILangues : Anglais (eng) Descripteur : [Termes IGN] carbone
[Termes IGN] gaz à effet de serre
[Termes IGN] Python (langage de programmation)
[Termes IGN] système de gestion de base de données
[Termes IGN] télédétectionMots-clés libres : Cloud CO2 Docker Gaz à Effet de Serre Git Marché du carbone Python Serviced’API SGBD Standard STAC Télédétection Traitement des données Index. décimale : MTSI Mémoires du Master Technologies des Systèmes d'Information Résumé : Carried out at Geotree, in Austria, and in collaboration with Mantle Labs, this Final Year Project (FWP) is part of the problem of scaling up and perfecting the processing of Earth observation data for the development of nature-based solutions. Geotree and MantleLabs are working together on Earth monitoring projects as part of the carbon market. With its extensive expertise in remote sensing, Geotree deploys a digital twin of the Earth that unlocks nature-based solutions.For its part, Mantle Labs is contributing its extensive experience in the use of satellite data, with the help of an international team. Through its cutting-edge tools for monitoring and verifying carbon sinks, Geotree provides scientific support for this market. The aim of this internship was to implement a service solution to automate the storage and retrieval of satellite data, central to Geotree. Indeed, quick and easy access to a large amount of data is becoming a common need. After an analysis phase of the STAC data standard, the work on this project consisted of developing an IT solution for the management and storage of satellite data. There are a number of prospects for this project. Finalising the deployment of the API on the Cloud receiving the solution is essential for its future use by the company’s team of data scientists. On the other hand, this API will be able to accommodate more different data (not standardised by STAC) and other functions (read function). Note that the Python codes, functional and commented, implemented during the internship is accessible via the Github continuous integration platform, but remains the property of Geotree. Con?sequently, no script from the source code will be presented in this report. Note de contenu : Introduction
1. Internchip presentation
2. STAC standard
3. Solution architecture
4. Project management
ConclusionNuméro de notice : 24172 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Mémoire de fin d'études IT Organisme de stage : Geotree / Mantle Labs (Vienne) Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103729 An automated approach for clipping geographic data before projection that maintains data integrity and minimizes distortion for virtually any projection method / Jim Graham in Cartographica, Vol 57 n° 4 (December 2022)
[article]
Titre : An automated approach for clipping geographic data before projection that maintains data integrity and minimizes distortion for virtually any projection method Type de document : Article/Communication Auteurs : Jim Graham, Auteur Année de publication : 2022 Article en page(s) : pp 257 - 269 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Projections
[Termes IGN] carroyage
[Termes IGN] intégrité des données
[Termes IGN] polygone
[Termes IGN] projection
[Termes IGN] Python (langage de programmation)Résumé : (auteur) Selecting a map projection is key to minimizing distortion and thus clear communication of spatial data and accurate spatial analysis. Methods exist for selecting projections based on the intended area of use but not for finding polygons that can be used to clip geographic data to ensure the data are projected correctly and within desired distortion limits. The projection methods available in the Proj library were examined to determine the nature of the errors and distortions they created based on global data and a wide variety of available settings. Approaches were then identified for each projection including simple bounding boxes and more complex clipping polygons. To make sure that errors were not introduced into the projected data, data integrity polygons (DIPs) were created by placing a grid of cells over the Earth and then finding a cell near the origin that was within the specified criteria. Adjacent cells were added to the DIPs that met the criteria until no additional cells could be added. The criteria included projected cell sides could not intersect with themselves or other cells, the order of the cell corners could not be reversed, and distortion within the cell had to be within specified limits. I found that up to two DIPs with a limit on length distortion of a factor of 4 provided a general solution for all but three projection methods. Limitations included the time to find DIPs at high resolution. Clipping polygons and visualizations of the results were made available on a website. Numéro de notice : A2022-923 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.3138/cart-2021-0015 Date de publication en ligne : 01/12/2022 En ligne : https://doi.org/10.3138/cart-2021-0015 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102465
in Cartographica > Vol 57 n° 4 (December 2022) . - pp 257 - 269[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 031-2022041 RAB Revue Centre de documentation En réserve L003 Disponible Graph-based leaf–wood separation method for individual trees using terrestrial lidar point clouds / Zhilin Tian in IEEE Transactions on geoscience and remote sensing, vol 60 n° 11 (November 2022)
[article]
Titre : Graph-based leaf–wood separation method for individual trees using terrestrial lidar point clouds Type de document : Article/Communication Auteurs : Zhilin Tian, Auteur ; Shihua Li, Auteur Année de publication : 2022 Article en page(s) : n° 5705111 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] bois
[Termes IGN] branche (arbre)
[Termes IGN] chemin le plus court, algorithme du
[Termes IGN] données lidar
[Termes IGN] échantillonnage de données
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] feuille (végétation)
[Termes IGN] graphe
[Termes IGN] Python (langage de programmation)
[Termes IGN] segmentation
[Termes IGN] semis de pointsRésumé : (auteur) Terrestrial light detection and ranging (lidar) is capable of resolving trees at the branch/leaf level with accurate and dense point clouds. The separation of leaf and wood components is a prerequisite for the estimation of branch/leaf-scale biophysical properties and realistic tree model reconstruction. Most existing methods have been tested on trees with similar structures; their robustness for trees of different species and sizes remains relatively unexplored. This study proposed a new graph-based leaf–wood separation (GBS) method for individual trees purely using the xyz -information of the point cloud. The GBS method fully utilized the shortest path-based features, as the shortest path can effectively reflect the structures for trees of different species and sizes. Ten types of tree data—covering tropical, temperate, and boreal species—with heights ranging from 5.4 to 43.7 m, were used to test the method performance. The mean accuracy and kappa coefficient at the point level were 94% and 0.78, respectively, and our method outperformed two other state-of-the-art methods. Through further analysis and testing, the GBS method exhibited a strong ability for detecting small and leaf-surrounded branches, and was also sufficiently robust in terms of data subsampling. Our research further demonstrated the potential of the shortest path-based features in leaf–wood separation. The entire framework was provided for use as an open-source Python package, along with our labeled validation data. Numéro de notice : A2022-853 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2022.3218603 Date de publication en ligne : 01/11/2022 En ligne : https://doi.org/10.1109/TGRS.2022.3218603 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102099
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 11 (November 2022) . - n° 5705111[article]Pyeo: A Python package for near-real-time forest cover change detection from Earth observation using machine learning / J.F. Roberts in Computers & geosciences, vol 167 (October 2022)
[article]
Titre : Pyeo: A Python package for near-real-time forest cover change detection from Earth observation using machine learning Type de document : Article/Communication Auteurs : J.F. Roberts, Auteur ; R. Mwangi, Auteur ; F. Mukabi, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 105192 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage automatique
[Termes IGN] carte thématique
[Termes IGN] déboisement
[Termes IGN] détection de changement
[Termes IGN] image Sentinel-MSI
[Termes IGN] informatique en nuage
[Termes IGN] Kenya
[Termes IGN] langage de programmation
[Termes IGN] observation de la Terre
[Termes IGN] Python (langage de programmation)
[Termes IGN] surveillance forestièreRésumé : (auteur) Monitoring forest cover change from Earth observation data streams in near-real-time presents a challenge for automated change detection by way of a continuously updated big dataset. Even though deforestation is a significant global problem, forest cover changes in pairs of subsequent images happen relatively infrequently. Detecting a change can require the download and processing of tens, hundreds or even thousands of images. In geoscientific applications of Earth observation, machine learning algorithms are increasingly used. Once trained, a machine learning model can be applied to new images automatically. This paper introduces the open-access Python 3 package Pyeo - “Python for Earth Observation”. Pyeo provides a set of portable, extensible and modular Python functions for the automation of machine learning applications from Earth observation data streams, including automated search and download functionality, pre-processing and atmospheric correction, re-projection, creation of thematic base layers and machine learning classification or regression. Pyeo enables users to train their own machine learning models and then apply the models to newly downloaded imagery over their area of interest. This paper describes in detail how Pyeo works, its requirements, benefits, and a description of the libraries used. An application to the automated forest cover change detection in a region in Kenya is given. Pyeo can be used on cloud computing architectures such as Amazon Web Services, Microsoft Azure and Google Colab to provide scalable applications and processing solutions for the geosciences. Numéro de notice : A2022-706 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.cageo.2022.105192 Date de publication en ligne : 09/07/2022 En ligne : https://doi.org/10.1016/j.cageo.2022.105192 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101575
in Computers & geosciences > vol 167 (October 2022) . - n° 105192[article]A geospatial workflow for the assessment of public transit system performance using near real-time data / Anastassios Dardas in Transactions in GIS, vol 26 n° 4 (June 2022)
[article]
Titre : A geospatial workflow for the assessment of public transit system performance using near real-time data Type de document : Article/Communication Auteurs : Anastassios Dardas, Auteur ; Brent Hall, Auteur ; Jon Salter, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1642 - 1664 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] ArcGIS
[Termes IGN] Calgary
[Termes IGN] collecte de données
[Termes IGN] données spatiotemporelles
[Termes IGN] itinéraire
[Termes IGN] planification urbaine
[Termes IGN] Python (langage de programmation)
[Termes IGN] stockage de données
[Termes IGN] temps réel
[Termes IGN] trafic routier
[Termes IGN] transport public
[Termes IGN] WebSIGRésumé : (auteur) This article presents the development of a Geographical Information Systems (GIS) workflow that harvests high-volume and high-frequency near real-time data from a public General Transit Feed Specification (GTFS) and calculates metrics for the assessment of on-time and route speed performance for a public transit system. The approach is applied to near real-time and static GTFS data collected over a 9-month period for the City of Calgary, Alberta, Canada. The workflow uses two Azure Virtual Machines (VMs), one to harvest the data and the other to process observations in parallel using Python and the ArcGIS API libraries. A Web GIS application is described that queries data from MongoDB to visualize the performance results in spatiotemporal form. The purpose of the workflow and Web GIS application is to provide actionable information to transit planners to improve public transportation systems. The data management and analysis workflow is transferable to similar GTFS data from other cities. Numéro de notice : A2022-531 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : sans Date de publication en ligne : 02/05/2022 En ligne : https://doi.org/10.1111/tgis.12942 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101078
in Transactions in GIS > vol 26 n° 4 (June 2022) . - pp 1642 - 1664[article]PermalinkConstruction d’un plugin QGIS de détection d’îlots de chaleur urbains à partir d’images satellitaires de type optique / Houssayn Meriche (2022)PermalinkCréation d’un indicateur de qualité de la desserte des transports pour des parcelles à une échelle locale / Nick Lin (2022)PermalinkIntroduction à la géomatique pour le statisticien : quelques concepts et outils innovants de gestion, traitement et diffusion de l’information spatiale / François Sémécurbe (2022)PermalinkPreparation of the VENµS satellite data over Israel for the input into the GRASP data treatment algorithm / Maeve Blarel (2022)PermalinkPython software to transform GPS SNR wave phases to volumetric water content / Angel Martín in GPS solutions, vol 26 n° 1 (January 2022)PermalinkRemise en forme des données géographiques des biotopes en milieu ouvert du Luxembourg / Alexandre Nghien (2022)PermalinkRévision de la chaîne de valorisation des données en système d’information décisionnel / Quentin Courtiade (2022)PermalinkUtilisations multiples de FME pour automatiser les traitements d’une collectivité / Emma Bolmin (2022)PermalinkComparative analysis for methods of building digital elevation models from topographic maps using geoinformation technologies / Vadim Belenok in Geodesy and cartography, vol 47 n° 4 (December 2021)Permalink