Descripteur
Termes IGN > mathématiques > sous ensemble flou
sous ensemble flouSynonyme(s)ensemble flouVoir aussi |
Documents disponibles dans cette catégorie (60)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Developing a GIS-based rough fuzzy set granulation model to handle spatial uncertainty for hydrocarbon structure classification, case study: Fars domain, Iran / Sahand Seraj in Geo-spatial Information Science, vol 25 n° 3 (October 2022)
[article]
Titre : Developing a GIS-based rough fuzzy set granulation model to handle spatial uncertainty for hydrocarbon structure classification, case study: Fars domain, Iran Type de document : Article/Communication Auteurs : Sahand Seraj, Auteur ; Mahmoud Reza Delavar, Auteur Année de publication : 2022 Article en page(s) : pp 399 - 41 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] cartographie géologique
[Termes IGN] classification floue
[Termes IGN] entropie de Shannon
[Termes IGN] forage
[Termes IGN] granulométrie (pétrologie)
[Termes IGN] hydrocarbure
[Termes IGN] incertitude géométrique
[Termes IGN] Iran
[Termes IGN] prospection minérale
[Termes IGN] sous ensemble flou
[Termes IGN] système d'information géographiqueRésumé : (auteur) It is well agreed that geologic risk occurs during hydrocarbon exploration because diverse uncertainties accompany the entire hydrocarbon system parameters such as the source rock, reservoir rock, trap and seal rock. In order to overcome such attributes with uncertainties, a number of soft computing methods are used. Information granules could be provided by the Rough Fuzzy Set Granulation (RFSG) with a thorough quality evaluation. This is capable of attribute reduction that has been claimed to be essential in investigating the hydrocarbon systems. This paper is an endeavor to recommend a Geospatial Information System (GIS)-based model with the aim of categorizing the hydrocarbon structures map consistent with the uncertainty range concepts of geologic risk in the rough fuzzy sets and granular computing. The model used the RFSG for the attribute reduction by a Decision Logic language (DL-language). The RFSG was employed in order to classify hydrocarbon structures according to geological risk and extract the fuzzy rules with a predefined range of uncertainty. In order to assess the precisions of the fuzzy decisions on the hydrocarbon structure classification, the fuzzy entropy and fuzzy cross-entropy are applied. The proposed RFSG model applied for 62 structures as the training data, average fuzzy entropy has been calculated as 0.85, whereas the average fuzzy cross-entropy has been calculated 0.18. As it can be discerned, just seven structures had cross-entropies greater than 0.1, while three structures were larger than 0.3. It is implied that the precision of the proposed model is about 89%. The results yielded two reductions for the condition attributes and 11 fuzzy rules being filtered by the granular computing values. Numéro de notice : A2022-724 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/10095020.2021.2020600 Date de publication en ligne : 03/02/2022 En ligne : https://doi.org/10.1080/10095020.2021.2020600 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101667
in Geo-spatial Information Science > vol 25 n° 3 (October 2022) . - pp 399 - 41[article]Decision fusion of deep learning and shallow learning for marine oil spill detection / Junfang Yang in Remote sensing, vol 14 n° 3 (February-1 2022)
[article]
Titre : Decision fusion of deep learning and shallow learning for marine oil spill detection Type de document : Article/Communication Auteurs : Junfang Yang, Auteur ; Yi Ma, Auteur ; Yabin Hu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 666 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme de fusion
[Termes IGN] analyse multiéchelle
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] hydrocarbure
[Termes IGN] image hyperspectrale
[Termes IGN] marée noire
[Termes IGN] milieu marin
[Termes IGN] pollution des mers
[Termes IGN] précision de la classification
[Termes IGN] sous ensemble flou
[Termes IGN] surveillance écologique
[Termes IGN] transformation en ondelettesRésumé : (auteur) Marine oil spills are an emergency of great harm and have become a hot topic in marine environmental monitoring research. Optical remote sensing is an important means to monitor marine oil spills. Clouds, weather, and light control the amount of available data, which often limit feature characterization using a single classifier and therefore difficult to accurate monitoring of marine oil spills. In this paper, we develop a decision fusion algorithm to integrate deep learning methods and shallow learning methods based on multi-scale features for improving oil spill detection accuracy in the case of limited samples. Based on the multi-scale features after wavelet transform, two deep learning methods and two classical shallow learning algorithms are used to extract oil slick information from hyperspectral oil spill images. The decision fusion algorithm based on fuzzy membership degree is introduced to fuse multi-source oil spill information. The research shows that oil spill detection accuracy using the decision fusion algorithm is higher than that of the single detection algorithms. It is worth noting that oil spill detection accuracy is affected by different scale features. The decision fusion algorithm under the first-level scale features can further improve the accuracy of oil spill detection. The overall classification accuracy of the proposed method is 91.93%, which is 2.03%, 2.15%, 1.32%, and 0.43% higher than that of SVM, DBN, 1D-CNN, and MRF-CNN algorithms, respectively. Numéro de notice : A2022-125 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs14030666 Date de publication en ligne : 30/01/2022 En ligne : https://doi.org/10.3390/rs14030666 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99688
in Remote sensing > vol 14 n° 3 (February-1 2022) . - n° 666[article]
Titre : Traitement possibiliste d'images, application au recalage d'images Type de document : Thèse/HDR Auteurs : Wissal Ben Markouza, Auteur ; Basel Solaiman, Directeur de thèse ; Khaled Bsaïes, Directeur de thèse Editeur : Institut Mines-Télécom Atlantique IMT Atlantique Année de publication : 2022 Importance : 151 p. Format : 21 x 30 cm Note générale : Bibliographie
Thèse de Doctorat de l'Ecole Nationale Supérieure Mines-Télécom Atlantique, Spécialité Signal, image, visionLangues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement d'images
[Termes IGN] classification dirigée
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] information sémantique
[Termes IGN] niveau de gris (image)
[Termes IGN] optimisation (mathématiques)
[Termes IGN] recalage d'image
[Termes IGN] sous ensemble flou
[Termes IGN] théorie des possibilitésIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Dans ce travail, nous proposons un système de recalage géométrique possibiliste qui fusionne les connaissances sémantiques et les connaissances au niveau du gris des images à recaler. Les méthodes de recalage géométrique existantes se reposent sur une analyse des connaissances au niveau des capteurs lors de la détection des primitives ainsi que lors de la mise en correspondance. L'évaluation des résultats de ces méthodes de recalage géométrique présente des limites au niveau de la perfection de la précision causées par le nombre important de faux amers. L’idée principale de notre approche proposée est de transformer les deux images à recaler en un ensemble de projections issues des images originales (source et cible). Cet ensemble est composé des images nommées « cartes de possibilité », dont chaque carte comporte un seul contenu et présente une distribution possibiliste d’une classe sémantique des deux images originales. Le système de recalage géométrique basé sur la théorie de possibilités proposé présente deux contextes : un contexte supervisé et un contexte non supervisé. Pour le premier cas de figure nous proposons une méthode de classification supervisée basée sur la théorie des possibilités utilisant les modèles d'apprentissage. Pour le contexte non supervisé, nous proposons une méthode de clustering possibiliste utilisant la méthode FCM-multicentroide. Les deux méthodes proposées fournissent en résultat les ensembles de classes sémantiques des deux images à recaler. Nous créons par la suite, les bases de connaissances pour le système de recalage possibiliste proposé. Nous avons amélioré la qualité du recalage géométrique existant en termes de perfection de précision, de diminution du nombre de faux amers et d'optimisation de la complexité temporelle. Note de contenu : Introduction générale
1- Etat de l'art
2- Recalage d'images : approche géométrique
3- estimation des distributions des possibilités pour le recalage géométrique
4- Systeme de recalage possibiliste
5- Expérimentation et évaluation du système de recalage possibiliste
Conclusions et perspectivesNuméro de notice : 24088 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Signal, image, vision : Mines-Télécom Atlantique : 2022 Organisme de stage : Laboratoire de Traitement de l'Information Medicale DOI : sans En ligne : https://theses.hal.science/tel-03917545 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102480 Un état de l’art sur l’imprécision spatiale et sa modélisation / Mattia Bunel in Cybergeo, European journal of geography, n° 2021 ([01/02/2021])
[article]
Titre : Un état de l’art sur l’imprécision spatiale et sa modélisation Titre original : A Review of Spatial Imprecision Modelisation Methods Type de document : Article/Communication Auteurs : Mattia Bunel , Auteur Année de publication : 2021 Projets : 1-Pas de projet / Article en page(s) : n° 966 Note générale : bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] données localisées
[Termes IGN] imprécision géométrique
[Termes IGN] incertitude géométrique
[Termes IGN] modèle conceptuel de données localisées
[Termes IGN] modèle d'incertitude
[Termes IGN] sous ensemble flouRésumé : (auteur) L’objectif de cet article est de présenter et définir la notion d’imprécision spatiale, terme qualifiant toutes les situations où un objet spatial, quelle que soit sa nature, voit ses limites difficilement identifiables. Nous présentons cette notion ainsi que les concepts qui y sont apparentés, en prenant soin de clarifier un vocabulaire confus et des définitions contradictoires. Cet article recense également les différentes théories et leurs implémentations, permettant de modéliser l’imprécision spatiale. L’ensemble de ce programme s’appuiera sur un exemple filé, permettant d’expliciter concepts et modélisations. Numéro de notice : A2021-175 Affiliation des auteurs : UGE-LASTIG (2020- ) Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueNat DOI : 10.4000/cybergeo.36126 Date de publication en ligne : 11/02/2021 En ligne : https://doi.org/10.4000/cybergeo.36126 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97225
in Cybergeo, European journal of geography > n° 2021 [01/02/2021] . - n° 966[article]Extracting knowledge from legacy maps to delineate eco-geographical regions / Lin Yang in International journal of geographical information science IJGIS, vol 35 n° 2 (February 2021)
[article]
Titre : Extracting knowledge from legacy maps to delineate eco-geographical regions Type de document : Article/Communication Auteurs : Lin Yang, Auteur ; Xinming Li, Auteur ; Qinye Yang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 250 - 272 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie thématique
[Termes IGN] carte ancienne
[Termes IGN] carte climatique
[Termes IGN] cartographie écologique
[Termes IGN] Chine
[Termes IGN] délimitation
[Termes IGN] données cartographiques
[Termes IGN] écorégion
[Termes IGN] extraction de données
[Termes IGN] logique floue
[Termes IGN] sous ensemble flou
[Termes IGN] zone tamponRésumé : (auteur) Legacy ecoregion maps contain knowledge on relationships between eco-region units and their environmental factors. This study proposes a method to extract knowledge from legacy area-class maps to formulate a set of fuzzy membership functions useful for regionalization. We develop a buffer zone approach to reduce the uncertainty of boundaries between eco-region units on area-class maps. We generate buffer zones with a Euclidean distance perpendicular to the boundaries, then the original eco-region units without buffer zones serve as the basic units to generate the probability density functions (PDF) of environmental variables. Then, we transform the PDFs to fuzzy membership functions for class-zones on the map. We demonstrate the proposed method with a climatic zone map of China. The results showed that the buffer zone approach effectively reduced the uncertainties of boundaries. A buffer distance of 10–15 km was recommended in this study. The climatic zone map generated based on the extracted fuzzy membership functions showed a higher spatial stratification heterogeneity (compared to the original map). Based on the fuzzy membership functions with climate data of 1961–2015, we also prepared an updated climatic zone map. This study demonstrates the prospects of using fuzzy membership functions to delineate area classes for regionalization purpose. Numéro de notice : A2021-025 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1806284 Date de publication en ligne : 17/09/2020 En ligne : https://doi.org/10.1080/13658816.2020.1806284 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96692
in International journal of geographical information science IJGIS > vol 35 n° 2 (February 2021) . - pp 250 - 272[article]Acquisition of weak GPS signals using wavelet-based de-noising methods / Mohaddeseh Sharie in Survey review, vol 52 n° 375 (November 2020)PermalinkFuzzy modelling of growth potential in forest development simulation / Damjan Strnad in Ecological Informatics, vol 48 (November 2018)Permalinkµ-shapes: Delineating urban neighborhoods using volunteered geographic information / Matt Aadland in Journal of Spatial Information Science, JoSIS, n° 12 (March 2016)PermalinkReconstruct street network from imprecise excavation data using fuzzy Hough transforms / Cyril de Runz in Geoinformatica, vol 18 n° 2 (April 2014)PermalinkA method for extracting burned areas from Landsat TM/ETM+ images by soft aggregation of multiple Spectral Indices and a region growing algorithm / D. Stroppiana in ISPRS Journal of photogrammetry and remote sensing, vol 69 (April 2012)PermalinkAccuracy 2010 : Proceedings of the Ninth international symposium on spatial accuracy assessment in natural resources and environmental sciences, Leicester, UK, 20 - 23 juillet 2010 / Nicholas J. Tate (2010)PermalinkRelative positions in words: a system that builds descriptions around Allen relations / P. Matsakis in International journal of geographical information science IJGIS, vol 24 n°1-2 (january 2010)PermalinkRepresenting geographical objects with scale-induced indeterminate boundaries: a neural network-based data model / José L. Silvan-Cardenas in International journal of geographical information science IJGIS, vol 23 n°3-4 (march - april 2009)PermalinkLocation approximation for local search services using natural language hints / S. Schockaert in International journal of geographical information science IJGIS, vol 22 n° 3 (march 2008)PermalinkMultispectral image classification: a supervised neural computation approach based on rough-fuzzy membership function and weak fuzzy similarity relation / A. Agrawal in International Journal of Remote Sensing IJRS, vol 28 n°19-20 (October 2007)Permalink