Descripteur
Documents disponibles dans cette catégorie (25)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Application of feature selection methods and machine learning algorithms for saltmarsh biomass estimation using Worldview-2 imagery / Sikdar M. M. Rasel in Geocarto international, vol 36 n° 10 ([01/06/2021])
[article]
Titre : Application of feature selection methods and machine learning algorithms for saltmarsh biomass estimation using Worldview-2 imagery Type de document : Article/Communication Auteurs : Sikdar M. M. Rasel, Auteur ; Hsing-Chung Chang, Auteur ; Timothy J. Ralph, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1075-1099 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] bande spectrale
[Termes IGN] biomasse
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] image multibande
[Termes IGN] image Worldview
[Termes IGN] marais salé
[Termes IGN] modèle de simulation
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] régression
[Termes IGN] variableRésumé : (Auteur) Assessing large scale plant productivity of coastal marshes is essential to understand the resilience of these systems to climate change. Two machine learning approaches, random forest (RF) and support vector machine (SVM) regression were tested to estimate biomass of a common saltmarshes species, salt couch grass (Sporobolus virginicus). Reflectance and vegetation indices derived from 8 bands of Worldview-2 multispectral data were used for four experiments to develop the biomass model. These four experiments were, Experiment-1: 8 bands of Worldview-2 image, Experiment-2: Possible combination of all bands of Worldview-2 for Normalized Difference Vegetation Index (NDVI) type vegetation indices, Experiment-3: Combination of bands and vegetation indices, Experiment-4: Selected variables derived from experiment-3 using variable selection methods. The main objectives of this study are (i) to recommend an affordable low cost data source to predict biomass of a common saltmarshes species, (ii) to suggest a variable selection method suitable for multispectral data, (iii) to assess the performance of RF and SVM for the biomass prediction model. Cross-validation of parameter optimizations for SVM showed that optimized parameter of ɛ-SVR failed to provide a reliable prediction. Hence, ν-SVR was used for the SVM model. Among the different variable selection methods, recursive feature elimination (RFE) selected a minimum number of variables (only 4) with an RMSE of 0.211 (kg/m2). Experiment-4 (only selected bands) provided the best results for both of the machine learning regression methods, RF (R2= 0.72, RMSE= 0.166 kg/m2) and SVR (R2= 0.66, RMSE = 0.200 kg/m2) to predict biomass. When a 10-fold cross validation of the RF model was compared with a 10-fold cross validation of SVR, a significant difference (p = Numéro de notice : A2021-367 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1624988 Date de publication en ligne : 11/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1624988 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97729
in Geocarto international > vol 36 n° 10 [01/06/2021] . - pp 1075-1099[article]Hyperspectral image denoising via clustering-based latent variable in variational Bayesian framework / Peyman Azimpour in IEEE Transactions on geoscience and remote sensing, vol 59 n° 4 (April 2021)
[article]
Titre : Hyperspectral image denoising via clustering-based latent variable in variational Bayesian framework Type de document : Article/Communication Auteurs : Peyman Azimpour, Auteur ; Tahereh Bahraini, Auteur ; Hadi Sadoghi Yazdi, Auteur Année de publication : 2021 Article en page(s) : pp 3266 - 3276 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse de groupement
[Termes IGN] classification bayesienne
[Termes IGN] classification floue
[Termes IGN] distribution de Gauss
[Termes IGN] factorisation de matrice non-négative
[Termes IGN] filtrage du bruit
[Termes IGN] filtre de Gauss
[Termes IGN] image hyperspectrale
[Termes IGN] Matlab
[Termes IGN] processeur graphique
[Termes IGN] qualité des données
[Termes IGN] variableRésumé : (auteur) The hyperspectral-image (HSI) noise-reduction step is a very significant preprocessing phase of data-quality enhancement. It has been attracting immense research attention in the remote sensing and image processing domains. Many methods have been developed for HSI restoration, the goal of which is to remove noise from the whole HSI cube simultaneously without considering the spectral–spatial similarity. When a noise-removal algorithm is used globally to the entire data set, it would not eliminate all levels of noise, effectively. Furthermore, most of the existing methods remove independent and identically distributed (i.i.d.) Gaussian noise. The real scenarios are much more complicated than this assumption. The complexity created by natural noise that has a non-i.i.d. structure leads to inefficient methods containing underestimation and invalid performance. In this article, we calculated the spatial–spectral similarity criteria by defining a set of clustering-based latent variables (CLVs) in a Bayesian framework to improve the robustness. These criteria can be extracted using the clustering operators. Then, by applying the CLV to the variational Bayesian model, we investigated a new low-rank matrix factorization denoising approach based on the proposed clustering-based latent variable (CLV-LRMF) to remove noise with the non-i.i.d. mixture of Gaussian structures. Finally, we switched to the GPU for MATLAB implementation to reduce the runtime. The experimental results show that the performance has been improved by applying the proposed CLV and demonstrate the effectiveness of the proposed CLV-LRMF over other state-of-the-art methods. Numéro de notice : A2021-287 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2939512 Date de publication en ligne : 24/03/2021 En ligne : https://doi.org/10.1109/TGRS.2019.2939512 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97396
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 4 (April 2021) . - pp 3266 - 3276[article]SAR image speckle reduction based on nonconvex hybrid total variation model / Yuli Sun in IEEE Transactions on geoscience and remote sensing, vol 59 n° 2 (February 2021)
[article]
Titre : SAR image speckle reduction based on nonconvex hybrid total variation model Type de document : Article/Communication Auteurs : Yuli Sun, Auteur ; Lin Lei, Auteur ; Dongdong Guan, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1231 - 1249 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] artefact
[Termes IGN] chatoiement
[Termes IGN] détection de contours
[Termes IGN] distribution de Fisher
[Termes IGN] gradient
[Termes IGN] image radar moirée
[Termes IGN] régularisation d'image
[Termes IGN] variableRésumé : (auteur) Speckle noise inherent in synthetic aperture radar (SAR) images seriously affects the visual effect and brings great difficulties to the postprocessing of the SAR image. Due to the edge-preserving feature, total variation (TV) regularization-based techniques have been extensively utilized to reduce the speckle. However, the strong scatters in SAR image with radiometry several orders of magnitude larger than their surrounding regions limit the effectiveness of TV regularization. Meanwhile, the ℓ1 -norm first-order TV regularization sometimes causes staircase artifacts as it favors solutions that are piecewise constant, and it usually underestimates high-amplitude components of image gradient as the ℓ1 -norm uniformly penalizes the amplitude. To overcome these shortcomings, a new hybrid variation model, called Fisher–Tippett (FT) distribution- ℓp -norm first-and second-order hybrid TVs (HTpVs), is proposed to reduce the speckle after removing the strong scatters. Especially, the FT-HTpV inherits the advantages of the distribution based data fidelity term, the nonconvex regularization, and the higher order TV regularization. Therefore, it can effectively remove the speckle while preserving point scatters and edges and reducing staircase artifacts well. To efficiently solve the nonconvex minimization problem, an iterative framework with a nonmonotone-accelerated proximal gradient (nmAPG) method and a matrix-vector acceleration strategy are used. Extensive experiments on both the simulated and real SAR images demonstrate the effectiveness of the proposed method. Numéro de notice : A2021-114 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3002561 Date de publication en ligne : 08/07/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3002561 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96924
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 2 (February 2021) . - pp 1231 - 1249[article]Spatial association between regionalizations using the information-theoretical V-measure / Jakub Nowosad in International journal of geographical information science IJGIS, vol 32 n° 11-12 (November - December 2018)
[article]
Titre : Spatial association between regionalizations using the information-theoretical V-measure Type de document : Article/Communication Auteurs : Jakub Nowosad, Auteur ; Tomasz F. Stepinski, Auteur Année de publication : 2018 Article en page(s) : pp 2386 - 2401 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] analyse de variance
[Termes IGN] distribution spatiale
[Termes IGN] logiciel libre
[Termes IGN] régionalisation (segmentation)
[Termes IGN] variableRésumé : (Auteur) There is a keen interest in calculating spatial associations between two variables spanning the same study area. Many methods for calculating such associations have been proposed, but the case when both variables are categorical is underdeveloped despite the fact that many datasets of interest are in the form of either regionalizations or thematic maps. In this paper, we advance this case by adapting the so-called -measure method from its original information-theoretical formulation to the analysis of variance formulation which provides more insight for spatial analysis. We present a step-by-step derivation of the -measure from the perspective of the analysis of variance. The method produces three indices of global association and two sets of local association indicators which could be mapped to indicate spatial distribution of association strength. The open-source software for calculating all indices from vector datasets accompanies the paper. To showcase the utility of the -measure, we identified three different application contexts: comparative, associative, and derivative, and present an example of each of them. The -measure method has several advantages over the widely used Mapcurves method, it has clear interpretations in terms of mutual information as well as in terms of analysis of variance, it provides more precise assessment of association, it is ready-to-use through the accompanying software, and the examples given in the paper serves as a guide to the gamut of its possible applications. Two specific contributions stemming from our re-analysis of the -measure are the finding of the conceptual flaw in the Geographical Detector—a method to quantify associations between numerical and categorical spatial variables, and a proposal for the new, cartographically based algorithm for finding an optimal number of regions in clustering-derived regionalizations. Numéro de notice : A2018-526 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2018.1511794 Date de publication en ligne : 30/08/2018 En ligne : https://doi.org/10.1080/13658816.2018.1511794 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91353
in International journal of geographical information science IJGIS > vol 32 n° 11-12 (November - December 2018) . - pp 2386 - 2401[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2018061 RAB Revue Centre de documentation En réserve L003 Disponible A generic remote sensing approach to derive operational essential biodiversity variables (EBVs) for conservation planning / Samuel Alleaume in Methods in ecology and evolution, vol 9 n° 8 (August 2018)
[article]
Titre : A generic remote sensing approach to derive operational essential biodiversity variables (EBVs) for conservation planning Type de document : Article/Communication Auteurs : Samuel Alleaume, Auteur ; Pauline Dusseux, Auteur ; Vincent Thieron, Auteur ; Loïc Commagnac , Auteur ; Sylvio Laventure, Auteur ; Marc Lang, Auteur ; Jean-Baptiste Féret, Auteur ; Laurence Hubert-Moy, Auteur ; Sandra Luque, Auteur Année de publication : 2018 Projets : 3-projet - voir note / Article en page(s) : pp 1822 - 1836 Note générale : bibliographie
The authors thank the French Ministry of Ecology, Sustainable Development and Energy (MEDDE) for partial financial supportLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Environnement
[Termes IGN] biodiversité
[Termes IGN] carte de la végétation
[Termes IGN] écosystème
[Termes IGN] habitat (nature)
[Termes IGN] image à très haute résolution
[Termes IGN] indicateur de biodiversité
[Termes IGN] phénologie
[Termes IGN] politique de conservation (biodiversité)
[Termes IGN] protection de la biodiversité
[Termes IGN] variableRésumé : (auteur) The open access availability of satellite images from new sensors characterized by various spatial and temporal resolutions provides new challenges and possibilities for biodiversity conservation. Methodologies aiming at characterizing vegetation type, phenology, and function can now benefit from metric spatial resolution imagery combined with an improved revisit capability. Here, we test hybrid methods and data fusion, using very high spatial resolution (VHSR) sensors in different complex landscapes encompassing three French biogeographical regions.
The methodological approach presented herein has a generic value in response to national conservation targets based on the concept of essential biodiversity variables accessed by remote sensing (RS‐enabled EBVs). We focused on deriving five RS‐enabled EBVs from natural and seminatural open ecosystems: (1) ecosystem distribution, (2) land cover, (3) heterogeneity, (4) primary productivity and (5) vegetation phenology. The challenge was to develop a method that would be technically feasible, economically viable, and sustainable in time.
We demonstrated that it is possible to derive key parameters required to develop a set of EBVs from remote sensing (RS) data. The combined use of remote sensing data sources with various spatial, temporal, and spectral resolutions is essential to obtain different indicators of natural habitats.
One major current challenge for an improved contribution of RS to conservation is to strengthen multiple collaborative frameworks among remote sensing scientists, conservation biologists, and ecologists in order to increase the efficiency of methodological exchange and draw benefits for successful conservation planning strategies.Numéro de notice : A2018-659 Affiliation des auteurs : IGN+Ext (2012-2019) Thématique : BIODIVERSITE Nature : Article nature-HAL : ArtAvecCL-RevueNat DOI : 10.1111/2041-210X.13033 Date de publication en ligne : 06/08/2018 En ligne : https://doi.org/10.1111/2041-210X.13033 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93817
in Methods in ecology and evolution > vol 9 n° 8 (August 2018) . - pp 1822 - 1836[article]3D local feature BKD to extract road information from mobile laser scanning point clouds / Yang Bisheng in ISPRS Journal of photogrammetry and remote sensing, vol 130 (August 2017)PermalinkBlind hyperspectral unmixing using total variation and ℓq sparse regularization / Jakob Sigurdsson in IEEE Transactions on geoscience and remote sensing, vol 54 n° 11 (November 2016)PermalinkA mixed weighted least squares and weighted total least squares adjustment method and its geodetic applications / Y. Zhou in Survey review, vol 48 n° 351 (October 2016)PermalinkApproximating prediction uncertainty for random forest regression models / John W. Coulston in Photogrammetric Engineering & Remote Sensing, PERS, vol 82 n° 3 (March 2016)PermalinkPermalinkAssessment of observing time-variable gravity from GOCE GPS and accelerometer observations / Pieter N.A.M. Visser in Journal of geodesy, vol 88 n° 11 (November 2014)PermalinkAlgorithmique / Sébastien Rohaut (2013)PermalinkLocal entropy map : a nonparametric approach to detecting spatially varying multivariate relationships / D. Guo in International journal of geographical information science IJGIS, vol 24 n° 9 (september 2010)PermalinkIndexation rapide de documents audio par traitement morphologique de la parole / F. Salama in Ingénierie des systèmes d'information, ISI : Revue des sciences et technologies de l'information, RSTI, vol 15 n° 2 (mars - avril 2010)PermalinkAlgorithmique / Sébastien Rohaut (2009)Permalink