Descripteur
Termes IGN > sciences naturelles > sciences de la Terre et de l'univers > géosciences > géographie physique > météorologie > météore > tempête
tempêteSynonyme(s)Tornade ouraganVoir aussi |
Documents disponibles dans cette catégorie (113)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
A machine learning approach for detecting rescue requests from social media / Zheye Wang in ISPRS International journal of geo-information, vol 11 n° 11 (November 2022)
[article]
Titre : A machine learning approach for detecting rescue requests from social media Type de document : Article/Communication Auteurs : Zheye Wang, Auteur ; Nina S.N. Lam, Auteur ; Mingxuan Sun, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 570 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] apprentissage automatique
[Termes IGN] code postal
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] Etats-Unis
[Termes IGN] filtrage d'information
[Termes IGN] secours d'urgence
[Termes IGN] tempête
[Termes IGN] terminologie
[Termes IGN] TwitterRésumé : (auteur) Hurricane Harvey in 2017 marked an important transition where many disaster victims used social media rather than the overloaded 911 system to seek rescue. This article presents a machine-learning-based detector of rescue requests from Harvey-related Twitter messages, which differentiates itself from existing ones by accounting for the potential impacts of ZIP codes on both the preparation of training samples and the performance of different machine learning models. We investigate how the outcomes of our ZIP code filtering differ from those of a recent, comparable study in terms of generating training data for machine learning models. Following this, experiments are conducted to test how the existence of ZIP codes would affect the performance of machine learning models by simulating different percentages of ZIP-code-tagged positive samples. The findings show that (1) all machine learning classifiers except K-nearest neighbors and Naïve Bayes achieve state-of-the-art performance in detecting rescue requests from social media; (2) using ZIP code filtering could increase the effectiveness of gathering rescue requests for training machine learning models; (3) machine learning models are better able to identify rescue requests that are associated with ZIP codes. We thereby encourage every rescue-seeking victim to include ZIP codes when posting messages on social media. This study is a useful addition to the literature and can be helpful for first responders to rescue disaster victims more efficiently. Numéro de notice : A2022-846 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi11110570 Date de publication en ligne : 16/11/2022 En ligne : https://doi.org/10.3390/ijgi11110570 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102081
in ISPRS International journal of geo-information > vol 11 n° 11 (November 2022) . - n° 570[article]A geographical and content-based approach to prioritize relevant and reliable tweets for emergency management / A. Marcela Suarez in Cartography and Geographic Information Science, Vol 49 n° 5 (September 2022)
[article]
Titre : A geographical and content-based approach to prioritize relevant and reliable tweets for emergency management Type de document : Article/Communication Auteurs : A. Marcela Suarez, Auteur ; Keith C. Clarke, Auteur Année de publication : 2022 Article en page(s) : pp 443 - 463 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] catastrophe naturelle
[Termes IGN] classement
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] Etats-Unis
[Termes IGN] fiabilité des données
[Termes IGN] filtrage d'information
[Termes IGN] gestion de crise
[Termes IGN] pertinence
[Termes IGN] qualité des données
[Termes IGN] secours d'urgence
[Termes IGN] tempête
[Termes IGN] TwitterRésumé : (auteur) Tweets posted by the general public during disaster events represent timely, up-to-date, and on-site data that may be useful for emergency responders. However, since Twitter data has been deemed to be unverifiable and untrustworthy, it is challenging to identify those reliable and relevant tweets that can inform emergency response operations. Although computational methods exist both to classify overwhelming amounts of tweets and to filter those relevant to emergency response, using contextual geographic information regarding the disaster event to filter tweets has been overlooked. We review the existing research on the quality of data contributed by the general public from a geographical perspective, and then propose an approach to prioritize tweets for emergency response based on their relevance and reliability. The novelty of the approach is twofold: a) the use of both authoritative data such as hazard-related information and on-the-ground reports provided by weather spotters and validated by the National Weather Service; and b) the fact that it leverages tweets content as well as their geographical context and location. Using Hurricane Harvey in 2017 as a case study, results show that by following the proposed approach 79% of tweets sent from post-identified flooded areas were classified as of high or medium relevance and reliability. This suggests that the proposed approach can provide an accurate prioritization of tweets to be used for real time emergency management. Numéro de notice : A2022-633 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2022.2081257 En ligne : https://doi.org/10.1080/15230406.2022.2081257 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101399
in Cartography and Geographic Information Science > Vol 49 n° 5 (September 2022) . - pp 443 - 463[article]Detecting land use and land cover change on Barbuda before and after the Hurricane Irma with respect to potential land grabbing: A combined volunteered geographic information and multi sensor approach / Andreas Rienow in International journal of applied Earth observation and geoinformation, vol 108 (April 2022)
[article]
Titre : Detecting land use and land cover change on Barbuda before and after the Hurricane Irma with respect to potential land grabbing: A combined volunteered geographic information and multi sensor approach Type de document : Article/Communication Auteurs : Andreas Rienow, Auteur ; Jan Schweighöfer, Auteur ; Torben Dedring, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 102732 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] anthropisation
[Termes IGN] Antilles (îles des)
[Termes IGN] carte thématique
[Termes IGN] changement d'occupation du sol
[Termes IGN] détection de changement
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données localisées des bénévoles
[Termes IGN] éclairage public
[Termes IGN] image Sentinel
[Termes IGN] image Terra-MODIS
[Termes IGN] occupation du sol
[Termes IGN] OpenStreetMap
[Termes IGN] tempête
[Termes IGN] utilisation du solRésumé : (auteur) Two months after the hurricanes Irma and Maria hit Barbuda, the construction of a new international airport led to accusations of degrading the Codrington Lagoon National Park and contravening the conventions of the Ramsar Program. Scientists have analyzed the aftermath with respect to historical legacies, disaster capitalism, manifestation of climate injustices and green gentrification. The main objective of this study was to quantify and allocate land use and land cover change (LULCC) in Barbuda before and after the 2017 Hurricane disasters. Remote sensing data and volunteered geographic information were analyzed to detect the potential changes in natural LULC so that human activities and the emergence of artificial surfaces could be detected. Human-induced LULCC occurred at different sites on the island, with decreased activities in Codrington, but increased and continued activities at Coco and Palmetto Points. With an accuracy of 97.1 %, we estimated a total increase of vegetated areas by 6.56 km2, and a simultaneous slight increase in roads and buildings with a total length of 249.67 km and a total area of 1.43 km2. The vegetation condition itself depict a steady decrease since 2017. New hotspots of human activity emerged on the island in the Codrington Lagoon National Park. Numéro de notice : A2022-233 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.102732 Date de publication en ligne : 02/03/2022 En ligne : https://doi.org/10.1016/j.jag.2022.102732 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100123
in International journal of applied Earth observation and geoinformation > vol 108 (April 2022) . - n° 102732[article]Simulation d'ouragans et de collectes de déchets sur QGIS pour l'amélioration de la collecte des déchets post-ouragan / Quy Thy Truong in Cartes & Géomatique, n° 247-248 (mars-juin 2022)
[article]
Titre : Simulation d'ouragans et de collectes de déchets sur QGIS pour l'amélioration de la collecte des déchets post-ouragan Type de document : Article/Communication Auteurs : Quy Thy Truong , Auteur ; Anne Ruas , Auteur Année de publication : 2022 Conférence : ICC 2021, 30th ICA international cartographic conference 14/12/2021 18/12/2021 Florence Italie Article en page(s) : pp 61 - 63 Note générale : Bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Systèmes d'information géographique
[Termes IGN] catastrophe naturelle
[Termes IGN] collecte des déchets
[Termes IGN] dommage matériel
[Termes IGN] gestion de crise
[Termes IGN] implémentation (informatique)
[Termes IGN] module d'extension
[Termes IGN] prototype
[Termes IGN] QGIS
[Termes IGN] Saint-Martin, île de
[Termes IGN] simulation spatiale
[Termes IGN] stockage
[Termes IGN] tempêteRésumé : (Auteur) [Contexte] Au cours des dernières décennies, des évènements naturels catastrophiques tels que des tempêtes et des ouragans ont touché des millions de personnes dans le Monde : environ 33 millions de personnes sont touchées chaque année entre 2007 et 2016 (Bellow et Wallemacq, 2018). Par exemple, l'ouragan Katrina (Etas-Unis, 2015) a causé des dégâts catastrophiques du centre de la Floride à l'est du Texas, au moins 1836 personnes sont mortes et le total des dommages matériels a été estimé à 125 milliards de dollars. Par ailleurs, le changement climatique est susceptible d'augmenter la fréquence des catégories d'ouragans les plus intenses ainsi que le niveau de la mer, entraînant des ondes de tempête plus destructrices lorsque des ouragans se produisent (GIEC, 2013). Les ouragans génèrent de grandes quantités de déchets directement liés aux impacts induits (Brown et al., 2011). La rapidité de collecte et de tri des déchets est essentielle car non seulement les déchets bloquent et ralentissent l'activité humaine mais ils génèrent aussi des pollutions. La gestion de ces déchets est donc un enjeu majeur dans la gestion de crise post-ouragan. L'ouragan Irma, qui a frappé les Caraïbes au début de septembre 2017, en particulier les îles de Saint-Martin et Saint-Barthélémy, est un exemple frappant de ce problème. Dans cet article nous présentons un système d'information pour améliorer la collecte des déchets post-ouragan aux Antilles françaises. Ces travaux sont faits dans le cadre du projet de recherche DéPOs financé par l'ANR. Numéro de notice : A2022-676 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueNat DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101891
in Cartes & Géomatique > n° 247-248 (mars-juin 2022) . - pp 61 - 63[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 021-2022011 SL Revue Centre de documentation Revues en salle Disponible Comprehensive study on the tropospheric wet delay and horizontal gradients during a severe weather event / Victoria Graffigna in Remote sensing, vol 14 n° 4 (February-2 2022)
[article]
Titre : Comprehensive study on the tropospheric wet delay and horizontal gradients during a severe weather event Type de document : Article/Communication Auteurs : Victoria Graffigna, Auteur ; Manuel Hernández-Pajares, Auteur ; Francisco Azpilicueta, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 888 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] données météorologiques
[Termes IGN] gradient de troposphère
[Termes IGN] phénomène climatique extrême
[Termes IGN] positionnement ponctuel précis
[Termes IGN] retard troposphérique zénithal
[Termes IGN] station GNSS
[Termes IGN] surveillance météorologique
[Termes IGN] tempête
[Termes IGN] Texas (Etats-Unis)
[Termes IGN] vapeur d'eauRésumé : (auteur) GNSS meteorology is today one of the most growing technologies to monitor severe weather events. In this paper, we present the usage of 160 GPS reference stations over the period of 14 days to monitor and track Hurricane Harvey, which struck Texas in August 2017. We estimate the Zenith Wet Delay (ZWD) and the tropospheric gradients with 30 s interval using TOMION v2 software and carry out the processing in Precise Point Positioning (PPP) mode. We study the relationship of these parameters with atmospheric variables extracted from Tropical Rainfall Measuring Mission (TRMM) satellite mission and climate reanalysis model ERA5. This research finds that the ZWD shows patterns related to the rainfall rate and to the location of the hurricane. We also find that the tropospheric gradients are correlated with water vapor gradients before and after the hurricane, and with the wind and the pressure gradients only after the hurricane. This study also shows a new finding regarding the spectral distribution of the gradients, with a clear diurnal period present, which is also found on the ZWD itself. This kind of study approaches the GNSS meteorology to the increasing requirements of meteorologist in terms of monitoring severe weather events. Numéro de notice : A2022-166 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.3390/rs14040888 Date de publication en ligne : 12/02/2022 En ligne : https://doi.org/10.3390/rs14040888 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99791
in Remote sensing > vol 14 n° 4 (February-2 2022) . - n° 888[article]Beech and hornbeam dominate oak 20 years after the creation of storm-induced gaps / Lucie Dietz in Forest ecology and management, vol 503 (January-1 2022)PermalinkCIME: Context-aware geolocation of emergency-related posts / Gabriele Scalia in Geoinformatica, vol 26 n° 1 (January 2022)PermalinkDetection of windthrown tree stems on UAV-orthomosaics using U-Net convolutional networks / Stefan Reder in Remote sensing, vol 14 n° 1 (January-1 2022)PermalinkEstimating timber volume loss due to storm damage in Carinthia, Austria, using ALS/TLS and spatial regression models / Arne Nothdurft in Forest ecology and management, vol 502 (December-15 2021)PermalinkModeling transit-assisted hurricane evacuation through socio-spatial networks / Yan Yang in International journal of geographical information science IJGIS, vol 35 n° 12 (December 2021)PermalinkLa campagne Caddiwa dans la région des îles du Cap-Vert / Cyrille Flamant in La Météorologie, n° 115 (2021)PermalinkA repeatable change detection approach to map extreme storm-related damages caused by intense surface runoff based on optical and SAR remote sensing: Evidence from three case studies in the South of France / Arnaud Cerbelaud in ISPRS Journal of photogrammetry and remote sensing, Vol 182 (December 2021)PermalinkMise en place d'un dispositif expérimental numérique pour l'enseignement des risques naturels avec le jeu vidéo Minetest / Jérôme Staub in Cartes & Géomatique, n° 245-246 (septembre - décembre 2021)PermalinkRecent increase in European forest harvests as based on area estimates (Ceccherini et al. 2020a) not confirmed in the French case / Nicolas Picard in Annals of Forest Science, vol 78 n° 1 (March 2021)PermalinkSimple method for identification of forest windthrows from Sentinel-1 SAR data incorporating PCA / Milan Lazecky in Procedia Computer Science, vol 181 (2021)Permalink