Descripteur
Documents disponibles dans cette catégorie (118)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
La cartographie du relief : Une gageure technique et des solutions / Laurent Polidori in Géomètre, n° 2212 (avril 2023)
[article]
Titre : La cartographie du relief : Une gageure technique et des solutions Type de document : Article/Communication Auteurs : Laurent Polidori, Auteur Année de publication : 2023 Article en page(s) : pp 38 - 48 Langues : Français (fre) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] canopée
[Termes IGN] crue
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] inondation
[Termes IGN] modèle numérique de terrain
[Termes IGN] nuage
[Termes IGN] photogrammétrie aérienne
[Termes IGN] photogrammétrie terrestre
[Termes IGN] précision des données
[Termes IGN] qualité du modèle
[Termes IGN] représentation du relief
[Termes IGN] semis de points
[Termes IGN] télémétrie laserRésumé : (Editeur) La reconstruction d’éléments tridimensionnels a fait l’objet de nombreux développements, avec des applications dans des domaines aussi variés que l’architecture, la géologie et l’anatomie, mais c’est au relief terrestre que l’on s’inté?resse dans ce dossier. Ainsi, une grande variété de techniques de mesure (photogrammétrie, radar, lidar), mises en œuvre depuis des satellites, des avions, des drones ou à même le sol, adaptées aux différentes échelles et aux différents paysages, permettent de cartographier le relief terrestre sous la forme de nuages de points. Ceux-ci servent à construire des modèles numériques de terrain (sol) ou de surface (canopée forestière, toits), utilisés dans de nombreux domaines, pourvus qu’ils respectent des exigences de qualité comme la précision des altitudes ou la cohérence de l’hydrographie. L’évolution des instruments d’observation et des algorithmes de traitement étend les possibilités de production de modèles de relief et leur usage pour la gestion des territoires. Dans ce contexte, la formation technique constitue le nouvel enjeu pour améliorer le dialogue entre les producteurs et les consommateurs. Numéro de notice : A2023-174 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article nature-HAL : ArtSansCL DOI : sans Date de publication en ligne : 01/04/2023 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102977
in Géomètre > n° 2212 (avril 2023) . - pp 38 - 48[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 063-2023041 RAB Revue Centre de documentation En réserve L003 Disponible Cross-supervised learning for cloud detection / Kang Wu in GIScience and remote sensing, vol 60 n° 1 (2023)
[article]
Titre : Cross-supervised learning for cloud detection Type de document : Article/Communication Auteurs : Kang Wu, Auteur ; Zunxiao Xu, Auteur ; Xinrong Lyu, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 2147298 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage dirigé
[Termes IGN] apprentissage profond
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] détection d'objet
[Termes IGN] données étiquetées d'entrainement
[Termes IGN] nuageRésumé : (auteur) We present a new learning paradigm, that is, cross-supervised learning, and explore its use for cloud detection. The cross-supervised learning paradigm is characterized by both supervised training and mutually supervised training, and is performed by two base networks. In addition to the individual supervised training for labeled data, the two base networks perform the mutually supervised training using prediction results provided by each other for unlabeled data. Specifically, we develop In-extensive Nets for implementing the base networks. The In-extensive Nets consist of two Intensive Nets and are trained using the cross-supervised learning paradigm. The Intensive Net leverages information from the labeled cloudy images using a focal attention guidance module (FAGM) and a regression block. The cross-supervised learning paradigm empowers the In-extensive Nets to learn from both labeled and unlabeled cloudy images, substantially reducing the number of labeled cloudy images (that tend to cost expensive manual effort) required for training. Experimental results verify that In-extensive Nets perform well and have an obvious advantage in the situations where there are only a few labeled cloudy images available for training. The implementation code for the proposed paradigm is available at https://gitee.com/kang_wu/in-extensive-nets. Numéro de notice : A2023-190 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/15481603.2022.2147298 Date de publication en ligne : 03/01/2023 En ligne : https://doi.org/10.1080/15481603.2022.2147298 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102969
in GIScience and remote sensing > vol 60 n° 1 (2023) . - n° 2147298[article]Combination of Sentinel-1 and Sentinel-2 data for tree species classification in a Central European biosphere reserve / Michael Lechner in Remote sensing, vol 14 n° 11 (June-1 2022)
[article]
Titre : Combination of Sentinel-1 and Sentinel-2 data for tree species classification in a Central European biosphere reserve Type de document : Article/Communication Auteurs : Michael Lechner, Auteur ; Alena Dostalova, Auteur ; Markus Hollaus, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 2687 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] analyse comparative
[Termes IGN] analyse harmonique
[Termes IGN] Autriche
[Termes IGN] biosphère
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] espèce végétale
[Termes IGN] feuillu
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] nébulosité
[Termes IGN] phénologie
[Termes IGN] Pinophyta
[Termes IGN] rapport signal sur bruit
[Termes IGN] réserve forestièreRésumé : (auteur) Microwave and optical imaging methods react differently to different land surface parameters and, thus, provide highly complementary information. However, the contribution of individual features from these two domains of the electromagnetic spectrum for tree species classification is still unclear. For large-scale forest assessments, it is moreover important to better understand the domain-specific limitations of the two sensor families, such as the impact of cloudiness and low signal-to-noise-ratio, respectively. In this study, seven deciduous and five coniferous tree species of the Austrian Biosphere Reserve Wienerwald (105,000 ha) were classified using Breiman’s random forest classifier, labeled with help of forest enterprise data. In nine test cases, variations of Sentinel-1 and Sentinel-2 imagery were passed to the classifier to evaluate their respective contributions. By solely using a high number of Sentinel-2 scenes well spread over the growing season, an overall accuracy of 83.2% was achieved. With ample Sentinel-2 scenes available, the additional use of Sentinel-1 data improved the results by 0.5 percentage points. This changed when only a single Sentinel-2 scene was supposedly available. In this case, the full set of Sentinel-1-derived features increased the overall accuracy on average by 4.7 percentage points. The same level of accuracy could be obtained using three Sentinel-2 scenes spread over the vegetation period. On the other hand, the sole use of Sentinel-1 including phenological indicators and additional features derived from the time series did not yield satisfactory overall classification accuracies (55.7%), as only coniferous species were well separated. Numéro de notice : A2022-540 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/rs14112687 Date de publication en ligne : 03/06/2022 En ligne : https://doi.org/10.3390/rs14112687 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101103
in Remote sensing > vol 14 n° 11 (June-1 2022) . - n° 2687[article]Framework for automatic coral reef extraction using Sentinel-2 image time series / Qizhi Zhang in Marine geodesy, vol 45 n° 3 (May 2022)
[article]
Titre : Framework for automatic coral reef extraction using Sentinel-2 image time series Type de document : Article/Communication Auteurs : Qizhi Zhang, Auteur ; Jian Zhang, Auteur ; Liang Cheng, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 195 - 231 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] Chine
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] filtrage de points
[Termes IGN] filtrage spatiotemporel
[Termes IGN] image Sentinel-MSI
[Termes IGN] mesure de similitude
[Termes IGN] nébulosité
[Termes IGN] récif corallien
[Termes IGN] série temporelleRésumé : (auteur) Using supervised and unsupervised classification on a single image to extract coral reef extent results in missing data and wrong extraction results. To improve the accuracy of coral reef extraction, this study proposes a novel technical framework for automatic coral reef extraction based on an image filtering strategy and spatiotemporal similarity measurements of pixel-level Sentinel-2 image time series. This method was applied to the Anda Reef, Daxian Reef, and Nanhua Reef, China, using 1464 Sentinel-2 images obtained from 2015–2020. Sentinel-2 images were automatically selected considering space, time, cloud cover, and image entropy after atmospheric correction. With the binary classification measurement standard using the digitization coral reef results of the Sentinel-2 images as the true value, the time series established by the modified normalized difference water index demonstrated high robustness and accuracy. Analyzing the time series curves of the coral reef and deep water verified that the spatiotemporal similarity measurement of this framework can stably extract the boundaries of the coral reef. Numéro de notice : A2022-353 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1080/01490419.2022.2051648 Date de publication en ligne : 28/03/2022 En ligne : https://doi.org/10.1080/01490419.2022.2051648 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100550
in Marine geodesy > vol 45 n° 3 (May 2022) . - pp 195 - 231[article]
Titre : Deep learning architectures for onboard satellite image analysis Type de document : Thèse/HDR Auteurs : Gaétan Bahl, Auteur ; Florent Lafarge, Directeur de thèse Editeur : Nice : Université Côte d'Azur Année de publication : 2022 Importance : 120 p. Format : 21 x 30 cm Note générale : Bibliographie
Thèse de Doctorat de l'Université Côte d’Azur, Spécialité InformatiqueLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] analyse d'image orientée objet
[Termes IGN] apprentissage profond
[Termes IGN] contour
[Termes IGN] détection d'objet
[Termes IGN] extraction du réseau routier
[Termes IGN] forêt
[Termes IGN] image satellite
[Termes IGN] nuage
[Termes IGN] régression
[Termes IGN] réseau neuronal convolutif
[Termes IGN] réseau neuronal de graphes
[Termes IGN] réseau neuronal récurrent
[Termes IGN] segmentation sémantiqueIndex. décimale : THESE Thèses et HDR Résumé : (Auteur) Les progrès des satellites d'observation de la Terre à haute résolution et la réduction des temps de revisite introduite par la création de constellations de satellites ont conduit à la création quotidienne de grandes quantités d'images (des centaines de Teraoctets par jour). Simultanément, la popularisation des techniques de Deep Learning a permis le développement d'architectures capables d'extraire le contenu sémantique des images. Bien que ces algorithmes nécessitent généralement l'utilisation de matériel puissant, des accélérateurs d'inférence IA de faible puissance ont récemment été développés et ont le potentiel d'être utilisés dans les prochaines générations de satellites, ouvrant ainsi la possibilité d'une analyse embarquée des images satellite. En extrayant les informations intéressantes des images satellite directement à bord, il est possible de réduire considérablement l'utilisation de la bande passante, du stockage et de la mémoire. Les applications actuelles et futures, telles que la réponse aux catastrophes, l'agriculture de précision et la surveillance du climat, bénéficieraient d'une latence de traitement plus faible, voire d'alertes en temps réel. Dans cette thèse, notre objectif est double : D'une part, nous concevons des architectures de Deep Learning efficaces, capables de fonctionner sur des périphériques de faible puissance, tels que des satellites ou des drones, tout en conservant une précision suffisante. D'autre part, nous concevons nos algorithmes en gardant à l'esprit l'importance d'avoir une sortie compacte qui peut être efficacement calculée, stockée, transmise au sol ou à d'autres satellites dans une constellation. Tout d'abord, en utilisant des convolutions séparables en profondeur et des réseaux neuronaux récurrents convolutionnels, nous concevons des réseaux neuronaux de segmentation sémantique efficaces avec un faible nombre de paramètres et une faible utilisation de la mémoire. Nous appliquons ces architectures à la segmentation des nuages et des forêts dans les images satellites. Nous concevons également une architecture spécifique pour la segmentation des nuages sur le FPGA d'OPS-SAT, un satellite lancé par l'ESA en 2019, et réalisons des expériences à bord à distance. Deuxièmement, nous développons une architecture de segmentation d'instance pour la régression de contours lisses basée sur une représentation à coefficients de Fourier, qui permet de stocker et de transmettre efficacement les formes des objets détectés. Nous évaluons la performance de notre méthode sur une variété de dispositifs informatiques à faible puissance. Enfin, nous proposons une architecture d'extraction de graphes routiers basée sur une combinaison de Fully Convolutional Networks et de Graph Neural Networks. Nous montrons que notre méthode est nettement plus rapide que les méthodes concurrentes, tout en conservant une bonne précision. Note de contenu : 1. Introduction
1.1 Context and motivation
1.2 Methods and Challenges
1.3 Contributions and outline
2. On-board image segmentation with compact networks
2.1 Introduction
2.2 Related works
2.3 Proposed architectures
2.4 Experiments on cloud segmentation
2.5 Experiments on forest segmentation
2.6 Conclusion
3. Recurrent convolutional networks for semantic segmentation
3.1 Introduction
3.2 Method
3.3 Experiments
3.4 Conclusion and future works
4. Regression of compact object contours
4.1 Introduction
4.2 Related Work
4.3 Method
4.4 Experiments
4.5 Conclusion
5. Road graph extraction
5.1 Introduction
5.2 Related Works
5.3 Method
5.4 Experiments
5.5 Limitations
5.6 Other uses of our method
5.7 Conclusion
6. Conclusion and Perspectives
6.1 Summary
6.2 Limitations and perspectives
6.3 Publications
6.4 Carbon Impact StatementNuméro de notice : 26912 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Informatique : Côte d'Azur : 2022 Organisme de stage : Inria Sophia-Antipolis Méditerranée nature-HAL : Thèse DOI : sans Date de publication en ligne : 27/09/2022 En ligne : https://tel.hal.science/tel-03789667v2 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101955 PermalinkSnow cover change assessment in the upper Bhagirathi basin using an enhanced cloud removal algorithm / Mritunjay Kumar Singh in Geocarto international, vol 36 n° 20 ([01/12/2021])PermalinkA parameterization of the cloud scattering polarization signal derived from GPM observations for microwave fast radative transfer models / Victoria Sol Galligani in IEEE Transactions on geoscience and remote sensing, vol 59 n° 11 (November 2021)PermalinkImproving the accuracy of spring phenology detection by optimally smoothing satellite vegetation index time series based on local cloud frequency / Jiaqi Tian in ISPRS Journal of photogrammetry and remote sensing, vol 180 (October 2021)PermalinkStochastic super-resolution for downscaling time-evolving atmospheric fields with a generative adversarial network / Jussi Leinonen in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 9 (September 2021)PermalinkPermalinkMultisensor data fusion for cloud removal in global and all-season Sentinel-2 imagery / Patrick Ebel in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 7 (July 2021)PermalinkG-band radar for humidity and cloud remote sensing / Ken B. Cooper in IEEE Transactions on geoscience and remote sensing, vol 59 n° 2 (February 2021)PermalinkImproving the accuracy of land cover classification in cloud persistent areas using optical and radar satellite image time series / Maylis Lopes in Methods in ecology and evolution, vol 11 n° 4 (April 2020)PermalinkDeep learning for multi-modal classification of cloud, shadow and land cover scenes in PlanetScope and Sentinel-2 imagery / Yuri Shendryk in ISPRS Journal of photogrammetry and remote sensing, vol 157 (November 2019)Permalink