Descripteur
Termes IGN > sciences naturelles > sciences de la Terre et de l'univers > géosciences > géographie physique > météorologie > température de surface
température de surfaceVoir aussi |
Documents disponibles dans cette catégorie (263)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Drought-vulnerable vegetation increases exposure of disadvantaged populations to heatwaves under global warming: A case study from Los Angeles / Chunyu Dong in Sustainable Cities and Society, vol 93 (June 2023)
[article]
Titre : Drought-vulnerable vegetation increases exposure of disadvantaged populations to heatwaves under global warming: A case study from Los Angeles Type de document : Article/Communication Auteurs : Chunyu Dong, Auteur ; Yu Yan, Auteur ; Jie Guo, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 104488 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] changement climatique
[Termes IGN] climat urbain
[Termes IGN] données socio-économiques
[Termes IGN] espace vert
[Termes IGN] ilot thermique urbain
[Termes IGN] image Terra-MODIS
[Termes IGN] Los Angeles
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] sécheresse
[Termes IGN] température au solRésumé : (auteur) Urban vegetation is valuable in alleviating local heatwaves. However, drought may decrease vegetation health and limit this cooling effect. Here we use satellite-based Normalized Difference Vegetation Index (NDVI) and Palmer Drought Severity Index (PDSI) to investigate the sensitivity of urban vegetation to drought in Coastal Greater Los Angeles (CGLA) from 2001 to 2020. We applied four statistical models to analyze the relations between 15 socioeconomic variables and the vegetation's sensitivity to drought. We then examined the changes in the cooling effect of the urban vegetation during drought and non-drought periods using remotely sensed land surface temperature (LST) data. The results suggest that economically disadvantaged areas with higher proportions of Hispanics and Blacks are typified by vegetation more sensitive to drought, which is likely linked to inequality in water use. Moreover, these populations experience a lower degree of vegetation cooling effects and higher exposure to heatwaves. The findings of this study imply that the potential of a community's vegetation in mitigating heatwaves is significantly influenced by the socioeconomic conditions of the community. Increasing the resilience of urban vegetation to drought in disadvantaged communities may help promote environmentally sustainable and socially resilient cities under a warming climate. Numéro de notice : A2023-191 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.scs.2023.104488 Date de publication en ligne : 26/02/2023 En ligne : https://doi.org/10.1016/j.scs.2023.104488 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102972
in Sustainable Cities and Society > vol 93 (June 2023) . - n° 104488[article]Forest structure and fine root biomass influence soil CO2 efflux in temperate forests under drought / Antonios Apostolakis in Forests, vol 14 n° 2 (February 2023)
[article]
Titre : Forest structure and fine root biomass influence soil CO2 efflux in temperate forests under drought Type de document : Article/Communication Auteurs : Antonios Apostolakis, Auteur ; Ingo Schöning, Auteur ; Beate Michalzik, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 411 Langues : Anglais (eng) Descripteur : [Termes IGN] Allemagne
[Termes IGN] biomasse forestière
[Termes IGN] forêt tempérée
[Termes IGN] puits de carbone
[Termes IGN] qualité du sol
[Termes IGN] sécheresse
[Termes IGN] structure d'un peuplement forestier
[Termes IGN] température au sol
[Termes IGN] teneur en carbone
[Termes IGN] teneur en eau de la végétation
[Vedettes matières IGN] Végétation et changement climatiqueNuméro de notice : A2023-165 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.3390/f14020411 Date de publication en ligne : 17/12/2023 En ligne : https://doi.org/10.3390/f14020411 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102871
in Forests > vol 14 n° 2 (February 2023) . - n° 411[article]
Titre : Artificial intelligence oceanography Type de document : Monographie Auteurs : Xiaofeng Li, Éditeur scientifique ; Fan Wang, Éditeur scientifique Editeur : Springer Nature Année de publication : 2023 Importance : 346 p. Format : 16 x 24 cm ISBN/ISSN/EAN : 978-981-19637-5-9 Note générale : bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] algue
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] cyclone
[Termes IGN] détection d'objet
[Termes IGN] iceberg
[Termes IGN] intelligence artificielle
[Termes IGN] océanographie
[Termes IGN] température de surface de la merRésumé : (éditeur) This open access book invites readers to learn how to develop artificial intelligence (AI)-based algorithms to perform their research in oceanography. Various examples are exhibited to guide details of how to feed the big ocean data into the AI models to analyze and achieve optimized results. The number of scholars engaged in AI oceanography research will increase exponentially in the next decade. Therefore, this book will serve as a benchmark providing insights for scholars and graduate students interested in oceanography, computer science, and remote sensing. Note de contenu : 1- Artificial Intelligence Foundation of smart ocean
2- Forecasting tropical instability waves based on artificial intelligence
3- Sea surface height anomaly prediction based on artificial intelligence
4- Satellite data-driven internal solitary wave forecast based on machine learning techniques
5- AI-based subsurface thermohaline structure retrieval from remote sensing observations
6- Ocean heat content retrieval from remote sensing data based on machine learning
7- Detecting tropical cyclogenesis using broad learning system from satellite passive microwave observations
8- Tropical cyclone monitoring based on geostationary satellite imagery
9- Reconstruction of pCO2 data in the Southern ocean based on feedforward neural network
10- Detection and analysis of mesoscale eddies based on deep learning
11- Deep convolutional neural networks-based coastal inundation mapping from SAR imagery: with one application case for Bangladesh, a UN-defined least developed country
12- Sea ice detection from SAR images based on deep fully convolutional networks
13- Detection and analysis of marine green algae based on artificial intelligence
14- Automatic waterline extraction of large-scale tidal flats from SAR images based on deep convolutional neural networks
15- Extracting ship’s size from SAR images by deep learning
16- Benthic organism detection, quantification and seamount biology detection based on deep learningNuméro de notice : 24105 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Monographie DOI : 10.1007/978-981-19-6375-9 En ligne : https://link.springer.com/book/10.1007/978-981-19-6375-9 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103058 Geographic-dependent variational parameter estimation: A case study with a 2D ocean temperature model / Zhenyang Du in Journal of Marine Systems, vol 237 (January 2023)
[article]
Titre : Geographic-dependent variational parameter estimation: A case study with a 2D ocean temperature model Type de document : Article/Communication Auteurs : Zhenyang Du, Auteur ; Xuefeng Zhang, Auteur ; et al., Auteur Année de publication : 2023 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] assimilation des données
[Termes IGN] estimation statistique
[Termes IGN] modèle océanographique
[Termes IGN] océanographie spatiale
[Termes IGN] température de surface de la mer
[Termes IGN] teneur en chaleur de l'océanRésumé : (auteur) Using observational information to tune uncertain physical parameters in an ocean model via a robust data assimilation method has great potential to reduce model bias and improve the quality of sea temperature analysis and prediction. However, how observational information should be used to optimize geographic-dependent parameters through four-dimensional variational (4DVAR) data assimilation, which is one of the most prevailing assimilation methods, has not been fully studied. In this study, a two-step 4DVAR method is proposed to enhance parameter correction when the assimilation model contains biased geographic-dependent parameters within a biased model framework. Here, the biased parameters are set to an oceanic eddy diffusion coefficient, Kv, that plays an important role in modulating synoptic, seasonal and long-term changes in ocean heat content. Within a twin assimilation experiment framework, the temperature “observations” generated from sampling a “truth” model are assimilated into a biased model to investigate to what extent Kv can be estimated using the 4DVAR method when Kv remains geographic-dependent. The results show that the geographic-dependent Kv distribution can be optimally estimated to further improve the sea temperature analysis performance compared with the state estimation only method. In addition, the model prediction performance is also discussed with optimally estimated parameters under various conditions of noisy and/or sparse ocean observations. These results provide some insights for the prediction of ocean temperature mixing and stratification in a 3D primitive ocean numerical model using 4DVAR data assimilation. Numéro de notice : A2023-080 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.jmarsys.2022.103824 En ligne : https://doi.org/10.1016/j.jmarsys.2022.103824 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102716
in Journal of Marine Systems > vol 237 (January 2023)[article]How to optimize the 2D/3D urban thermal environment: Insights derived from UAV LiDAR/multispectral data and multi-source remote sensing data / Rongfang Lyu in Sustainable Cities and Society, vol 88 (January 2023)
[article]
Titre : How to optimize the 2D/3D urban thermal environment: Insights derived from UAV LiDAR/multispectral data and multi-source remote sensing data Type de document : Article/Communication Auteurs : Rongfang Lyu, Auteur ; Jili Pang, Auteur ; Xiaolei Tian, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 104287 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] Chine
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] espace vert
[Termes IGN] hauteur du bâti
[Termes IGN] ilot thermique urbain
[Termes IGN] image captée par drone
[Termes IGN] image Landsat-OLI
[Termes IGN] image multibande
[Termes IGN] image Sentinel-MSI
[Termes IGN] Leaf Area Index
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] optimisation (mathématiques)
[Termes IGN] paysage urbain
[Termes IGN] plan d'eau
[Termes IGN] planification urbaine
[Termes IGN] réseau bayesien
[Termes IGN] semis de points
[Termes IGN] température au solRésumé : (auteur) The systematical exploration of how two-dimensional (2D) and three-dimensional (3D) features of urban landscapes influence land surface temperature (LST) is still limited. Therefore, we investigated the influence of three main urban landscapes—urban green space, impervious land, and water bodies on LST, with a particular focus on the 3D vegetation metrics of green volume (GV) and leaf area index (LAI). We used Yinchuan City, China, as a case study. We quantified the impacts of various 2D/3D metrics of the three landscape types on LST using a random forest analysis with multiple sources, including Unmanned Aerial Vehicle (UAV) and remote sensing images. We then generated a Bayesian Network (BN) model to identify the optimal configurations for each landscape type. We found that using 11 of the 31 metrics considered, our model could explain 81.8% of the observed variance in LST of Yinchuan City. Among those, water body metrics were the most important, followed by vegetation abundance, impervious land metrics, and landscape pattern of urban green space. The mean classification error of the BN model was only 22.9%. We suggest that this makes the BN model a promising support tool for urban planning with a view to urban heat island mitigation. Our findings also stress the importance of considering both 2D and 3D features when considering urban cooling strategies. Numéro de notice : A2023-007 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article DOI : 10.1016/j.scs.2022.104287 Date de publication en ligne : 02/11/2022 En ligne : https://doi.org/10.1016/j.scs.2022.104287 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102095
in Sustainable Cities and Society > vol 88 (January 2023) . - n° 104287[article]Tree diversity and identity modulate the growth response of thermophilous deciduous forests to climate warming / Giovanni Jacopetti in Oikos, vol 2023 n° inconnu (2023)PermalinkSea surface temperature prediction model for the Black Sea by employing time-series satellite data: a machine learning approach / Hakan Oktay Aydınlı in Applied geomatics, vol 14 n° 4 (December 2022)PermalinkThe simulation and prediction of land surface temperature based on SCP and CA-ANN models using remote sensing data: A case study of Lahore / Muhammad Nasar Ahmad in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 12 (December 2022)PermalinkModelling and accessing land degradation vulnerability using remote sensing techniques and the analytical hierarchy process approach / Abebe Debele Tolche in Geocarto international, vol 37 n° 24 ([20/10/2022])PermalinkFeux de forêt : un drone traque les risques de reprise / Nathalie Da Cruz in Géomètre, n° 2205 (septembre 2022)PermalinkAn investigation into heat storage by adopting local climate zones and nocturnal-diurnal urban heat island differences in the Tokyo Prefecture / Christopher O'Malley in Sustainable Cities and Society, vol 83 (August 2022)PermalinkHeat wave-induced augmentation of surface urban heat islands strongly regulated by rural background / Shiqi Miao in Sustainable Cities and Society, vol 82 (July 2022)PermalinkSynergistic use of the SRAL/MWR and SLSTR sensors on board Sentinel-3 for the wet tropospheric correction retrieval / Pedro Aguiar in Remote sensing, vol 14 n° 13 (July-1 2022)PermalinkThe interrelationship between LST, NDVI, NDBI, and land cover change in a section of Lagos metropolis, Nigeria / Alfred S. Alademomi in Applied geomatics, vol 14 n° 2 (June 2022)PermalinkVegetation cover mapping from RGB webcam time series for land surface emissivity retrieval in high mountain areas / Benedikt Hiebl in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2022 (2022 edition)Permalink