Descripteur
Termes IGN > 1-Candidats > modèle mathématique > modèle de simulation
modèle de simulationSynonyme(s)modèle de prévisionVoir aussi |
Documents disponibles dans cette catégorie (383)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Evaluating future railway-induced urban growth of twelve cities using multiple SLEUTH models with open-source geospatial inputs / Alvin Christopher G. Varquez in Sustainable Cities and Society, vol 91 (April 2023)
[article]
Titre : Evaluating future railway-induced urban growth of twelve cities using multiple SLEUTH models with open-source geospatial inputs Type de document : Article/Communication Auteurs : Alvin Christopher G. Varquez, Auteur ; Sifan Dong, Auteur ; Shinya Hanaoka, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 104442 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] automate cellulaire
[Termes IGN] changement d'utilisation du sol
[Termes IGN] croissance urbaine
[Termes IGN] gare
[Termes IGN] modèle de simulation
[Termes IGN] modélisation spatiale
[Termes IGN] réseau ferroviaire
[Termes IGN] système d'information géographique
[Termes IGN] urbanisationRésumé : (auteur) Plausible urban growth projections aid in the understanding and treatment of multidisciplinary issues faced in society. In this work, we investigated the possible effects of train stations on urban growth by comparing urban projections from a cellular-automata-based land use change model, named SLEUTH, with versions (i.e. SLEUTsH and SLEUTsHGA introduced in this study) that can consider railway-induced urban growth and those (i.e. SLEUTH and SLEUTHGA) that do not. It was found that the influence of the railway stations on urban growth varied with time and according to each city. In general, railway stations induced urbanization in their immediate surroundings. However, edge growth, which is growth at the urban boundaries was slow in the first five years of the future prediction. As demonstrated by the higher urban growth rates simulated for the first few years in the SLEUTsH cases than the SLEUTH cases, the presence of railway stations will lead to more rapid urbanization in the 2040s. Mainly relying on publicly available GIS datasets, this work demonstrates the potential for modeling railway-induced urban growth on a global scale. The findings can be further confirmed with other cellular-automata models using a similar methodology. Numéro de notice : A2023-151 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.scs.2023.104442 Date de publication en ligne : 08/02/2023 En ligne : https://doi.org/10.1016/j.scs.2023.104442 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102824
in Sustainable Cities and Society > vol 91 (April 2023) . - n° 104442[article]Species distribution modelling under climate change scenarios for maritime pine (Pinus pinaster Aiton) in Portugal / Cristina Alegria in Forests, vol 14 n° 3 (March 2023)
[article]
Titre : Species distribution modelling under climate change scenarios for maritime pine (Pinus pinaster Aiton) in Portugal Type de document : Article/Communication Auteurs : Cristina Alegria, Auteur ; Alice M. Almeida, Auteur ; Natalia Roque, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 591 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] changement climatique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] distribution spatiale
[Termes IGN] entropie maximale
[Termes IGN] gestion forestière
[Termes IGN] modèle de simulation
[Termes IGN] modélisation de la forêt
[Termes IGN] Pinus pinaster
[Termes IGN] Portugal
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) To date, a variety of species potential distribution mapping approaches have been used, and the agreement in maps produced with different methodological approaches should be assessed. The aims of this study were: (1) to model Maritime pine potential distributions for the present and for the future under two climate change scenarios using the machine learning Maximum Entropy algorithm (MaxEnt); (2) to update the species ecological envelope maps using the same environmental data set and climate change scenarios; and (3) to perform an agreement analysis for the species distribution maps produced with both methodological approaches. The species distribution maps produced by each of the methodological approaches under study were reclassified into presence–absence binary maps of species to perform the agreement analysis. The results showed that the MaxEnt-predicted map for the present matched well the species’ current distribution, but the species ecological envelope map, also for the present, was closer to the species’ empiric potential distribution. Climate change impacts on the species’ future distributions maps using the MaxEnt were moderate, but areas were relocated. The 47.3% suitability area (regular-medium-high), in the present, increased in future climate change scenarios to 48.7%–48.3%. Conversely, the impacts in species ecological envelopes maps were higher and with greater future losses than the latter. The 76.5% suitability area (regular-favourable-optimum), in the present, decreased in future climate change scenarios to 58.2%–51.6%. The two approaches combination resulted in a 44% concordance for the species occupancy in the present, decreasing around 30%–35% in the future under the climate change scenarios. Both methodologies proved to be complementary to set species’ best suitability areas, which are key as support decision tools for planning afforestation and forest management to attain fire-resilient landscapes, enhanced forest ecosystems biodiversity, functionality and productivity. Numéro de notice : A2023-167 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.3390/f14030591 Date de publication en ligne : 16/03/2023 En ligne : https://doi.org/10.3390/f14030591 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102904
in Forests > vol 14 n° 3 (March 2023) . - n° 591[article]Analysing urban growth using machine learning and open data: An artificial neural network modelled case study of five Greek cities / Pavlos Tsagkis in Sustainable Cities and Society, vol 89 (February 2023)
[article]
Titre : Analysing urban growth using machine learning and open data: An artificial neural network modelled case study of five Greek cities Type de document : Article/Communication Auteurs : Pavlos Tsagkis, Auteur ; Efthimios Bakogiannis, Auteur ; Alexandros Nikitas, Auteur Année de publication : 2023 Article en page(s) : n° 104337 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] automate cellulaire
[Termes IGN] Corine (base de données)
[Termes IGN] croissance urbaine
[Termes IGN] données localisées libres
[Termes IGN] étalement urbain
[Termes IGN] Grèce
[Termes IGN] modèle de simulation
[Termes IGN] modèle numérique de surface
[Termes IGN] modèle orienté agent
[Termes IGN] OpenStreetMap
[Termes IGN] planification urbaine
[Termes IGN] réseau neuronal artificielRésumé : (auteur) Urban development if not planned and managed adequately can be unsustainable. Urban growth models have been a powerful toolkit to help tackling this challenge. In this paper, we use a machine learning approach, to apply an urban growth model to five of the largest cities in Greece. Specifically, we first develop a methodology to collect, organise, handle and transform historical open spatial data, concerning various impact factors, into machine learning data. Such factors involve social, economic, biophysical, neighbouring-related and political driving forces, which must be transformed into tabular data. We also provide an artificial neural network (ANN) model and the methodology to train and evaluate it using goodness-of-fit metrics, which in turn provide the best weights of impact factors. Finally, we execute a prediction for 2030, presenting the results and output maps for each of the five case study cities. As our study is based on pan-European datasets, our model can be used for any area within Europe, using the open-source utility developed to support it. In this sense, our work provides local policy-makers and urban planners with an instrument that could help them analyse various future development scenarios and take the right decisions going forward. Numéro de notice : A2023-116 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article DOI : 10.1016/j.scs.2022.104337 Date de publication en ligne : 05/12/2022 En ligne : https://doi.org/10.1016/j.scs.2022.104337 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102486
in Sustainable Cities and Society > vol 89 (February 2023) . - n° 104337[article]Evaluation of growth models for mixed forests used in Swedish and Finnish decision support systems / Jorge Aldea in Forest ecology and management, vol 529 (February-1 2023)
[article]
Titre : Evaluation of growth models for mixed forests used in Swedish and Finnish decision support systems Type de document : Article/Communication Auteurs : Jorge Aldea, Auteur ; Simone Bianchi, Auteur ; Urban Nilsson, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 120721 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] Betula (genre)
[Termes IGN] Finlande
[Termes IGN] forêt boréale
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] modèle de croissance végétale
[Termes IGN] modèle de simulation
[Termes IGN] peuplement mélangé
[Termes IGN] Picea abies
[Termes IGN] Pinus sylvestris
[Termes IGN] Suède
[Termes IGN] système d'aide à la décision
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) Interest in mixed forests is increasing since they could provide higher benefits and positive externalities compared to monocultures, although their management is more complex and silvicultural prescriptions for them are still scarce. Growth simulations are a powerful tool for developing useful guidelines for mixed stands. Heureka and Motti are two decision support systems commonly used for forest management in Sweden and Finland respectively. They were developed mostly with data from pure stands, so how they would perform in mixed stands is currently uncertain. We compiled a large and updated common database of well-replicated experimental research sites and monitoring networks composed by 218 and 1,160 plot-level observations of mixed stands from Sweden and Finland, respectively. We aimed to evaluated the accuracy of Heureka and Motti basal area growth models in those mixed-species stands and to detect any bias in their short-term predictions. Basal area growth simulations (excluding mortality models) were compared to observed stand-level values in a period-wise process with update of the start values in each period. The residual plots were visually examined for different stand mixtures: Norway spruce (Picea abies Karst.)-birch (Betula spp), Scots pine (Pinus sylvestris L.)-birch and Scots pine-Norway spruce. We observed that the basal area growth models in both decision support systems performed quite well for all mixtures regardless of the proportion of species. Motti simulations overestimated growth in Scots pine-Norway spruce mixtures by 0.063 m2·ha−1·year−1 which may be acceptable for practical use. Therefore, we corroborated that both decision support systems can be currently utilized for short-term forest growth simulation of mixed boreal forests. Numéro de notice : A2023-107 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1016/j.foreco.2022.120721 Date de publication en ligne : 28/12/2022 En ligne : https://doi.org/10.1016/j.foreco.2022.120721 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102441
in Forest ecology and management > vol 529 (February-1 2023) . - n° 120721[article]Measuring spatial nonstationary effects of POI-based mixed use on urban vibrancy using Bayesian spatially varying coefficients model / Zensheng Wang in International journal of geographical information science IJGIS, vol 37 n° 2 (February 2023)
[article]
Titre : Measuring spatial nonstationary effects of POI-based mixed use on urban vibrancy using Bayesian spatially varying coefficients model Type de document : Article/Communication Auteurs : Zensheng Wang, Auteur ; Feidong Lu, Auteur ; Zhaohui Liu, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 339 - 359 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] approche hiérarchique
[Termes IGN] classification bayesienne
[Termes IGN] dynamique spatiale
[Termes IGN] estimation bayesienne
[Termes IGN] hétérogénéité spatiale
[Termes IGN] modèle de simulation
[Termes IGN] planification urbaine
[Termes IGN] point d'intérêt
[Termes IGN] Shenzhen
[Termes IGN] téléphonie mobile
[Termes IGN] urbanisation
[Termes IGN] utilisation du solRésumé : (auteur) Understanding the relationship between mixed land use and urban vibrancy is vital in advanced urban planning applications. This study presents a Bayesian spatially varying coefficient (SVC) model to explore the spatially nonstationary relationship between mixed land use and urban vibrancy after controlling for other factors. We first use the convolutional conditional autoregressive prior to accommodate the ecological bias resulting from unobserved confounders. Then we develop our approach in the case of a single predictor to allow the spatially varying coefficient process. We further introduce a type of the Bayesian SVC model that considers the stratified heterogeneity of the outcome, allowing the coefficients to simultaneously vary at the local and subregion level. We illustrate the proposed model by conducting a case study in Shenzhen using mobile phone data, an officially registered point-of-interest (POI) dataset, and several supplementary datasets. The model evaluation results show that including spatially unstructured and structured component combinations can improve the model's fitness and predictive ability; additionally, considering spatial stratified heterogeneity can further enhance the model's performance. Our findings provide an alternative for measuring the variable local-scale association between mixed-use and urban vibrancy and offer new insights that broaden the fields of environmental science and spatial statistics. Numéro de notice : A2023-057 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2117363 En ligne : https://doi.org/10.1080/13658816.2022.2117363 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102393
in International journal of geographical information science IJGIS > vol 37 n° 2 (February 2023) . - pp 339 - 359[article]Nonparametric upscaling of bark beetle infestations and management from plot to landscape level by combining individual-based with Markov chain models / Bruno Walter Pietzsch in European Journal of Forest Research, vol 142 n° 1 (February 2023)PermalinkTesting the application of process-based forest growth model PREBAS to uneven-aged forests in Finland / Man Hu in Forest ecology and management, vol 529 (February-1 2023)PermalinkAnalysis of cycling network evolution in OpenStreetMap through a data quality prism / Raphaël Bres (2023)PermalinkHGAT-VCA: Integrating high-order graph attention network with vector cellular automata for urban growth simulation / Xuefeng Guan in Computers, Environment and Urban Systems, vol 99 (January 2023)PermalinkSimplified automatic prediction of the level of damage to similar buildings affected by river flood in a specific area / David Marín-García in Sustainable Cities and Society, vol 88 (January 2023)PermalinkAssessing spatio-temporal mapping and monitoring of climatic variability using SPEI and RF machine learning models / Saadia Sultan Wahlaa in Geocarto international, vol 37 n° 27 ([20/12/2022])PermalinkModelling evacuation preparation time prior to floods: A machine learning approach / R. Sreejith in Sustainable Cities and Society, vol 87 (December 2022)PermalinkSea surface temperature prediction model for the Black Sea by employing time-series satellite data: a machine learning approach / Hakan Oktay Aydınlı in Applied geomatics, vol 14 n° 4 (December 2022)PermalinkThe simulation and prediction of land surface temperature based on SCP and CA-ANN models using remote sensing data: A case study of Lahore / Muhammad Nasar Ahmad in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 12 (December 2022)PermalinkA whale optimization algorithm–based cellular automata model for urban expansion simulation / Yuan Ding in International journal of applied Earth observation and geoinformation, vol 115 (December 2022)Permalink