Descripteur
Termes IGN > sciences naturelles > physique > optique > optique physique > radiométrie > rayonnement électromagnétique > modèle de transfert radiatif
modèle de transfert radiatifSynonyme(s)Discrete Anisotropic Radiative Transfer, DARTVoir aussi |
Documents disponibles dans cette catégorie (79)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Estimating 10-m land surface albedo from Sentinel-2 satellite observations using a direct estimation approach with Google Earth Engine / Xingwen Lin in ISPRS Journal of photogrammetry and remote sensing, vol 194 (December 2022)
[article]
Titre : Estimating 10-m land surface albedo from Sentinel-2 satellite observations using a direct estimation approach with Google Earth Engine Type de document : Article/Communication Auteurs : Xingwen Lin, Auteur ; Shengbiao Wu, Auteur ; Bin Chen, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1 - 20 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] albedo
[Termes IGN] bande spectrale
[Termes IGN] distribution du coefficient de réflexion bidirectionnelle BRDF
[Termes IGN] Google Earth Engine
[Termes IGN] hétérogénéité spatiale
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Terra-MODIS
[Termes IGN] Leaf Area Index
[Termes IGN] modèle de transfert radiatif
[Termes IGN] phénologie
[Termes IGN] réflectance de surfaceRésumé : (auteur) Land surface albedo plays an important role in controlling the surface energy budget and regulating the biophysical processes of natural dynamics and anthropogenic activities. Satellite remote sensing is the only practical approach to estimate surface albedo at regional and global scales. It nevertheless remains challenging for current satellites to capture fine-scale albedo variations due to their coarse spatial resolutions from tens to hundreds of meters. The emerging Sentinel-2 satellites, with a high spatial resolution of 10 m and an approximate 5-day revisiting cycle, provide a promising solution to address these observational limitations, yet their potentials remain underexplored. In this study, we integrated the Sentinel-2 observations with an updated direct estimation approach to improve the estimation and monitoring of fine-scale surface albedo. To enable the capability of the direct estimation approach at a 10-m scale, we combined the 10-m resolution European Space Agency (ESA) WorldCover land cover data and the 500-m resolution Moderate-Resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF)/albedo product to build a high-quality and representative BRDF training database. To evaluate our approach, we proposed an integrated evaluation framework leveraging 3-D physical model simulations, ground measurements, and satellite observations. Specifically, we first simulated a comprehensive dataset of Sentinel-2-like surface reflectance and broadband albedo across a variety of geometric configurations using the MODIS BRDF training samples. With this dataset, we built the Look-Up-Tables (LUTs) that connect surface broadband albedo and Sentinel-2 reflectance through a direct angular bin-based linear regression approach, and further coupled these LUTs with the Google Earth Engine (GEE) cloud-computing platform. We next evaluated the proposed algorithm at two spatial levels: (1) 10-m scale for absolute accuracy assessment using the references from the Discrete Anisotropic Radiative Transfer (DART) simulations and flux-site observations, and (2) 500-m scale for large-scale mapping assessment by comparing the estimated albedo with the MODIS albedo product. Lastly, we presented four examples to show the capability of Sentinel-2 albedo in detecting fine-scale characteristics of vegetation and urban covers. Results show that: (1) the proposed algorithm accurately estimates surface albedo from Sentinel-2-like reflectance across different landscape configurations (overall root-mean-square-error (RMSE) = 0.018, bias = 0.005, and coefficient of determination (R2) = 0.88); (2) the Sentinel-2-derived surface albedo agrees well with ground measurements (overall RMSE = 0.030, bias = -0.004, and R2 = 0.94) and MODIS products (overall RMSE = 0.030, bias = 0.021, and R2 = 0.97); and (3) Sentinel-2-derived albedo accurately captures seasonal leaf phenology and rapid snow events, and detects the interspecific (or interclass) variations of tree species and colored urban rooftops. These results demonstrate the capability of the proposed approach to map high-resolution surface albedo from Sentinel-2 satellites over large spatial and temporal contexts, suggesting the potential of using such fine-scale datasets to improve our understanding of albedo-related biophysical processes in the coupled human-environment system. Numéro de notice : A2022-823 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.09.016 Date de publication en ligne : 14/10/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.09.016 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101999
in ISPRS Journal of photogrammetry and remote sensing > vol 194 (December 2022) . - pp 1 - 20[article]Challenging the link between functional and spectral diversity with radiative transfer modeling and data / Javier Pacheco-Labradora in Remote sensing of environment, vol 280 (October 2022)
[article]
Titre : Challenging the link between functional and spectral diversity with radiative transfer modeling and data Type de document : Article/Communication Auteurs : Javier Pacheco-Labradora, Auteur ; Mirco Migliavacca, Auteur ; Xuanlong Ma, Auteur ; Miguel D. Mahecha, Auteur ; Nuno Carvalhais, Auteur ; Ulrich Weber, Auteur ; Raquel Benavides, Auteur ; Olivier Bouriaud , Auteur ; et al., Auteur Année de publication : 2022 Projets : 3-projet - voir note / Article en page(s) : n° 113170 Note générale : bibliographie
JPL, MMi, and MMa acknowledge the German Aerospace Center (DLR) project OBEF-Accross2 “The Potential of Earth Observations to Capture Patterns of Biodiversity” (Contract No. 50EE1912, German Aerospace Center). JPL, MMi, AH, CW, MMa, GK, FJB, and UW acknowledge the German Aerospace Center (DLR) for providing DESIS imagery through the Announcement of Opportunity “EBioIDEA: Enhancing Biodiversity Inventories with DESIS Imagery Analysis”. FunDivEUROPE data collection was supported by the European Union Seventh Framework Programme (FP7/2007-2013) (grant agreement number: 265171) and the EU H2020 project Soil4Europe (Bioidversa 2017-2019). The in-situ plant traits data collected over Romanian and Spanish sites were supported by a Marie-Curie Fellowship (DIVERFOR, FP7-PEOPLE-2011-IEF. No. 302445) to R. Benavides. OB acknowledges funding from project 10PFE/2021 Ministry of Research, Innovation and Digitalization within Program 1 - Development of national research and development system, Subprogram 1.2 - Institutional Performance - RDI excellence funding projects. XM was supported by the National Natural Science Foundation of China (42171305), the Director Fund of the International Research Center of Big Data for Sustainable Development Goals (CBAS2022DF006), and the Open Fund of State Key Laboratory of Remote Sensing Science (OFSLRSS202229). We thank Prof. Dr. Michael Scherer-Lorenzen for coordinating the interaction with the FunDivEUROPE network and Dr. Fernando Valladares for coordinating data production in FunDivEUROPE sites in Spain. We thank Yuhan Li for helping collect and process Sentinel-2 data in 2020 for the verification task. ESA's Copernicus Open Access Hub enabled the free use of Sentinel-2 data.Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] biodiversité végétale
[Termes IGN] image hyperspectrale
[Termes IGN] image optique
[Termes IGN] image Sentinel-MSI
[Termes IGN] limite de résolution spectrale
[Termes IGN] modèle de transfert radiatif
[Termes IGN] variabilitéRésumé : (auteur) In a context of accelerated human-induced biodiversity loss, remote sensing (RS) is emerging as a promising tool to map plant biodiversity from space. Proposed approaches often rely on the Spectral Variation Hypothesis (SVH), linking the heterogeneity of terrestrial vegetation to the variability of the spectroradiometric signals. Yet, due to observational limitations, the SVH has been insufficiently tested, remaining unclear which metrics, methods, and sensors could provide the most reliable estimates of plant biodiversity. Here we assessed the potential of RS to infer plant biodiversity using radiative transfer simulations and inversion. We focused specifically on “functional diversity,” which represents the spatial variability in plant functional traits. First, we simulated vegetation communities and evaluated the information content of different functional diversity metrics (FDMs) derived from their optical reflectance factors (R) or the corresponding vegetation “optical traits,” estimated via radiative transfer model inversion. Second, we assessed the effect of the spatial resolution, the spectral characteristics of the sensor, and signal noise on the relationships between FDMs derived from field and remote sensing datasets. Finally, we evaluated the plausibility of the simulations using Sentinel-2 (multispectral, 10 m pixel) and DESIS (hyperspectral, 30 m pixel) imagery acquired over sites of the Functional Significance of Forest Biodiversity in Europe (FunDivEUROPE) network. We demonstrate that functional diversity can be inferred both by reflectance and optical traits. However, not all the FDMs tested were suited for assessing plant functional diversity from RS. Rao's Q index, functional dispersion, and functional richness were the best-performing metrics. Furthermore, we demonstrated that spatial resolution is the most limiting RS feature. In agreement with simulations, Sentinel-2 imagery provided better estimates of plant diversity than DESIS, despite the coarser spectral resolution. However, Sentinel-2 offered inaccurate results at DESIS spatial resolution. Overall, our results identify the strengths and weaknesses of optical RS to monitor plant functional diversity. Future missions and biodiversity products should consider and benefit from the identified potentials and limitations of the SVH. Numéro de notice : A2022-582 Affiliation des auteurs : LIF+Ext (2020- ) Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.rse.2022.113170 Date de publication en ligne : 18/07/2022 En ligne : https://doi.org/10.1016/j.rse.2022.113170 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101343
in Remote sensing of environment > vol 280 (October 2022) . - n° 113170[article]DART-Lux: An unbiased and rapid Monte Carlo radiative transfer method for simulating remote sensing images / Yingjie Wang in Remote sensing of environment, vol 274 (June 2022)
[article]
Titre : DART-Lux: An unbiased and rapid Monte Carlo radiative transfer method for simulating remote sensing images Type de document : Article/Communication Auteurs : Yingjie Wang, Auteur ; Abdelaziz Kallel, Auteur ; Xuebo Yang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 112973 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] bande spectrale
[Termes IGN] distribution du coefficient de réflexion bidirectionnelle BRDF
[Termes IGN] image à haute résolution
[Termes IGN] méthode de Monte-Carlo
[Termes IGN] modèle de transfert radiatif
[Termes IGN] radiance
[Termes IGN] réflectance directionnelle
[Termes IGN] scène forestière
[Termes IGN] scène urbaineRésumé : (auteur) Accurate and efficient simulation of remote sensing images is increasingly needed in order to better exploit remote sensing observations and to better design remote sensing missions. DART (Discrete Anisotropic Radiative Transfer), developed since 1992 based on the discrete ordinates method (i.e., standard mode DART-FT), is one of the most accurate and comprehensive 3D radiative transfer models to simulate the radiative budget and remote sensing observations of urban and natural landscapes. Recently, a new method, called DART-Lux, was integrated into DART model to address the requirements of massive remote sensing data simulation for large-scale and complex landscapes. It is developed based on efficient Monte Carlo light transport algorithms (i.e., bidirectional path tracing) and on DART model framework. DART-Lux can accurately and rapidly simulate the bidirectional reflectance factor (BRF) and spectral images of arbitrary landscapes. This paper presents its theory, implementation, and evaluation. Its accuracy, efficiency and advantages are also discussed. The comparison with standard DART-FT in a variety of scenarios shows that DART-Lux is consistent with DART-FT (relative differences Numéro de notice : A2022-398 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.rse.2022.112973 Date de publication en ligne : 26/03/2022 En ligne : https://doi.org/10.1016/j.rse.2022.112973 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100698
in Remote sensing of environment > vol 274 (June 2022) . - n° 112973[article]Efficient convolutional neural architecture search for LiDAR DSM classification / Aili Wang in IEEE Transactions on geoscience and remote sensing, vol 60 n° 5 (May 2022)
[article]
Titre : Efficient convolutional neural architecture search for LiDAR DSM classification Type de document : Article/Communication Auteurs : Aili Wang, Auteur ; Dong Xue, Auteur ; Haibin Wu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 5703317 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] modèle de transfert radiatif
[Termes IGN] modèle numérique de surface
[Termes IGN] précision de la classification
[Termes IGN] semis de pointsRésumé : (auteur) Light detection and ranging (LiDAR) data provide rich elevation information, so it plays an irreplaceable role in ground object classification. Recently, convolutional neural networks (CNNs) have shown excellent performance in LiDAR digital surface models (DSMs) classification. However, the architecture of CNN model relies heavily on manual design, so it has great limitations. In addition, different sensors capture LiDAR datasets with different properties, so the model should be designed to suit for different datasets, which further increases the workload of architecture design. Therefore, this article proposes a method of automatic design of LiDAR DSM classification model. First, attention mechanism is introduced into search space to improve the feature extraction capability of the model. Then, a gradient-based search strategy is used to obtain the optimal architecture from this search space. Second, a learning rate adjustment strategy is proposed to reduce the time spent in the search stage and evaluation stage to improve the classification accuracy of the model. Finally, a regularization scheme is introduced to enhance the robustness of the model and avoid overfitting. Experimental results on three public LiDAR datasets (Bayview Park, Recology, and Houston) obtained from different sensors show that the proposed neural architecture search method achieves the impressive classification performance compared to several state-of-the-art classification methods and improves the classification accuracy under the condition of limited training samples. Numéro de notice : A2022-408 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2022.3171520 Date de publication en ligne : 02/05/2022 En ligne : https://doi.org/10.1109/TGRS.2022.3171520 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100742
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 5 (May 2022) . - n° 5703317[article]A convolution neural network for forest leaf chlorophyll and carotenoid estimation using hyperspectral reflectance / Shuo Shi in International journal of applied Earth observation and geoinformation, vol 108 (April 2022)
[article]
Titre : A convolution neural network for forest leaf chlorophyll and carotenoid estimation using hyperspectral reflectance Type de document : Article/Communication Auteurs : Shuo Shi, Auteur ; Lu Xu, Auteur ; Wei Gong, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 102719 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] chlorophylle
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] écosystème forestier
[Termes IGN] feuille (végétation)
[Termes IGN] modèle de transfert radiatif
[Termes IGN] processus gaussien
[Termes IGN] réflectance spectrale
[Termes IGN] régressionRésumé : (auteur) Forest leaf chlorophyll (Cab) and carotenoid (Cxc) are key functional indicators for the state of the forest ecosystem. Current machine learning models based on hyperspectral reflectance are widely applied to estimate leaf Cab and Cxc contents at leaf scale. However, these models have certain accuracy for non-independent datasets but have poor generalization for independent datasets when they are used to estimate leaf Cab and Cxc contents. This fact limits that hyperspectral remote sensing completely replaces destructive measurements for leaf Cab and Cxc contents. Thus, the development of an estimation model with high accuracy and satisfactory generalization is necessary. Convolutional neural networks (CNNs) have certain accuracy and generalization in many domains, and have the potential to solve above-mentioned problem. Therefore, this study developed a CNN using one-dimensional hyperspectral reflectance, which aimed to improve the model's accuracy and generalization in leaf Cab and Cxc content estimation at leaf scale. The proposed CNN was developed by three steps. First, in consideration of the correlation between leaf Cab and Cxc contents in natural leaves, 2500 physical data with leaf reflectance and corresponding Cab and Cxc contents were generated by leaf radiative transfer model and multivariable gaussian distribution function. Then, the proposed CNN was built by five strategies based on the architecture of the AlexNet. Finally, five-fold cross validation was performed with 70% of the physical data to determine the best strategy to develop the proposed CNN. These were executed to ensure the proposed CNN with the maximum accuracy and generalization. In addition, the accuracy and generalization of the proposed CNN were tested using a non-independent dataset and an independent dataset, respectively. The proposed CNN was also compared with back propagation neural network (BPNN), support vector regression (SVR) and gaussian process regression (GPR). Results showed that the best CNN could be developed with one input, five convolutional, three max-pooling and three fully-connected layers. Comprehensively considering the model's accuracy and generalization, the proposed CNN was the best model for leaf Cab and Cxc content estimation compared with BPNN, SVR and GPR. This study provides a development strategy of CNN estimation model using one-dimensional hyperspectral reflectance at leaf scale. The proposed CNN could further promote the practical application of hyperspectral remote sensing in leaf Cab and Cxc content estimation. Numéro de notice : A2022-231 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.102719 Date de publication en ligne : 16/02/2022 En ligne : https://doi.org/10.1016/j.jag.2022.102719 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100119
in International journal of applied Earth observation and geoinformation > vol 108 (April 2022) . - n° 102719[article]DART: An efficient 3D Monte Carlo vector radiative transfer model for remote sensing applications / Yingjie Wang (2022)PermalinkRadiative transfer modeling in structurally complex stands: towards a better understanding of parametrization / Frédéric André in Annals of Forest Science, vol 78 n° 4 (December 2021)PermalinkA parameterization of the cloud scattering polarization signal derived from GPM observations for microwave fast radative transfer models / Victoria Sol Galligani in IEEE Transactions on geoscience and remote sensing, vol 59 n° 11 (November 2021)PermalinkRefining MODIS NIR atmospheric water vapor retrieval algorithm using GPS-derived water vapor data / Jia He in IEEE Transactions on geoscience and remote sensing, vol 59 n° 5 (May 2021)PermalinkAutomatic atmospheric correction for shortwave hyperspectral remote sensing data using a time-dependent deep neural network / Jian Sun in ISPRS Journal of photogrammetry and remote sensing, vol 174 (April 2021)PermalinkCloud detection from paired CrIS water vapor and CO₂ channels using machine learning techniques / Miao Tian in IEEE Transactions on geoscience and remote sensing, vol 59 n° 4 (April 2021)PermalinkApport de la modélisation physique pour la cartographie de la biodiversité végétale en forêts tropicales par télédétection optique / Dav Ebengo Mwampongo (2021)PermalinkApports des méthodes d'apprentissage profond pour la reconnaissance automatique des modes d'occupation des sols et d'objets par télédétection en milieu tropical / Guillaume Rousset (2021)PermalinkImpact of INSAT-3D/3DR radiance data assimilation in predicting tropical cyclone Titli over the bay of Bengal / Raghu Nadimpalli in IEEE Transactions on geoscience and remote sensing, vol 58 n° 10 (October 2020)PermalinkTowards a semi-automated mapping of Australia native invasive alien Acacia trees using Sentinel-2 and radiative transfer models in South Africa / Cecilia Masemola in ISPRS Journal of photogrammetry and remote sensing, vol 166 (August 2020)Permalink