Descripteur
Documents disponibles dans cette catégorie (33)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
SALT: A multifeature ensemble learning framework for mapping urban functional zones from VGI data and VHR images / Hao Wu in Computers, Environment and Urban Systems, vol 100 (March 2023)
[article]
Titre : SALT: A multifeature ensemble learning framework for mapping urban functional zones from VGI data and VHR images Type de document : Article/Communication Auteurs : Hao Wu, Auteur ; Wenting Luo, Auteur ; Anqi Lin, Auteur ; Fanghua Hao, Auteur ; Ana-Maria Olteanu-Raimond , Auteur ; Lanfa Liu, Auteur ; Yan Li, Auteur Année de publication : 2023 Projets : 1-Pas de projet / Article en page(s) : n° 101921 Note générale : Bibliographie
This work was supported by the National Natural Science Foundation of China [42201468, 42071358], Postdoctoral Innovation Talents Support Program of China [BX20220128], China Postdoctoral Science Foundation [2022M721283] and Fundamental Research Funds for the Central Universities [CCNU22QN018].Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse multicritère
[Termes IGN] apprentissage automatique
[Termes IGN] boosting adapté
[Termes IGN] cartographie urbaine
[Termes IGN] Chine
[Termes IGN] détection du bâti
[Termes IGN] données localisées des bénévoles
[Termes IGN] image à très haute résolution
[Termes IGN] morphologie urbaine
[Termes IGN] OpenStreetMap
[Termes IGN] point d'intérêt
[Termes IGN] représentation spatiale
[Termes IGN] zone urbaineRésumé : (auteur) Urban functional zone mapping is essential for providing deeper insights into urban morphology and improving urban planning. The emergence of Volunteered Geographic Information (VGI), which provides abundant semantic data, offers a great opportunity to enrich land use information extracted from remote sensing (RS) images. Taking advantage of very-high-resolution (VHR) images and VGI data, this work proposed a SATL multifeature ensemble learning framework for mapping urban functional zones that integrated 65 features from the shapes of building objects, attributes of points of interest (POIs) tags, locations of cellphone users and textures of VHR images. The dimensionality of SALT features was reduced by the autoencoder, and the compressed features were applied to train the ensemble learning model composed of multiple classifiers for optimizing the urban functional zone classification. The effectiveness of the proposed framework was tested in an urbanized region of Nanchang City. The results indicated that the SALT features considering population dynamics and building shapes are comprehensive and feasible for urban functional zone mapping. The autoencoder has been proven efficient for dimension reduction of the original SALT features as it significantly improves the classification of urban functional zones. Moreover, the ensemble learning outperforms other machine learning models in terms of the accuracy and robustness when dealing with multi-classification tasks. Numéro de notice : A2023-125 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : GEOMATIQUE/IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101921 Date de publication en ligne : 06/12/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101921 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102504
in Computers, Environment and Urban Systems > vol 100 (March 2023) . - n° 101921[article]Long-term changes in 3D urban form in four Spanish cities / Dario Domingo in Landscape and Urban Planning, vol 230 (February 2023)
[article]
Titre : Long-term changes in 3D urban form in four Spanish cities Type de document : Article/Communication Auteurs : Dario Domingo, Auteur ; Jasper van Vliet, Auteur ; Anna M. Hersperger, Auteur Année de publication : 2023 Article en page(s) : n° 104624 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] croissance urbaine
[Termes IGN] densification
[Termes IGN] données cadastrales
[Termes IGN] données lidar
[Termes IGN] Espagne
[Termes IGN] étalement urbain
[Termes IGN] hauteur du bâti
[Termes IGN] morphologie urbaine
[Termes IGN] périphérie urbaineRésumé : (auteur) Three-dimensional urban form has a considerable influence on urban sustainability, being the reason spatial planning regulate it. Yet, we know very little about the development of building density and building height over time. In this study, we characterize the horizontal and vertical patterns of urban development in Barcelona, Madrid, Valencia, and Zaragoza between 1965 and 2015. Our analysis is based on a unique combination of cadastral data and LiDAR point clouds, which we use to characterize building footprint, height, and volume, at decadal intervals. Subsequently, we characterize urban expansion and densification processes using building volume and Urban Form Types. We find that height of new buildings shows a significant downward trend during the 70′s for the four urban areas and a decreasing trend after the 2008 real estate bubble for the cases of Barcelona and Valencia. Over the analyzed period a decrease of 116, 313, 217 and 157 cm in average building height was observed for Barcelona, Madrid, Valencia, and Zaragoza, respectively. Urbanized volume of all cities together has expanded by roughly 350% between 1950 and 2015. Sparse built-up form showed the largest absolute increase, although it contains only a low fraction of new built-up volume. A clear trend towards expansion is observed in city outskirts and the development of new urban clusters in municipalities closer to the main city. At the same time, settlements have followed incremental steps towards densification of the city-cores over time. This study provides a first step towards comprehensive understanding of long-term changes in 3D urban form, which can inform the development of policies that target the third dimension in urban form to steer sustainable urban growth. Numéro de notice : A2023-012 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article DOI : 10.1016/j.landurbplan.2022.104624 Date de publication en ligne : 09/11/2023 En ligne : https://doi.org/10.1016/j.landurbplan.2022.104624 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102124
in Landscape and Urban Planning > vol 230 (February 2023) . - n° 104624[article]3D building metrics for urban morphology / Anna Labetski in International journal of geographical information science IJGIS, vol 37 n° 1 (January 2023)
[article]
Titre : 3D building metrics for urban morphology Type de document : Article/Communication Auteurs : Anna Labetski, Auteur ; Stelios Vitalis, Auteur ; Filip Biljecki, Auteur ; Ken Arroyo Ohori, Auteur ; Jantien E. Stoter, Auteur Année de publication : 2023 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] données localisées 3D
[Termes IGN] indicateur spatial
[Termes IGN] modèle 3D de l'espace urbain
[Termes IGN] morphologie urbaine
[Termes IGN] niveau de détail
[Termes IGN] Pays-Bas
[Termes IGN] SIG 3DRésumé : (auteur) Urban morphology is important in a broad range of investigations across the fields of city planning, transportation, climate, energy, and urban data science. Characterising buildings with a set of numerical metrics is fundamental to studying the urban form. Despite the rapid developments in 3D geoinformation science, and the growing 3D data availability, most studies simplify buildings to their 2D footprint, and when taking their height into account, they at most assume one height value per building, i.e. simple 3D. We take the first step in elevating building metrics into full/true 3D, uncovering the use of higher levels of detail, and taking into account the detailed shape of a building. We set the foundation of the new research line on 3D urban morphology by providing a comprehensive set of 3D metrics, implementing them in openly released software, generating an open dataset containing 2D and 3D metrics for 823,000 buildings in the Netherlands, and demonstrating a use case where clusters and architectural patterns are analysed through time. Our experiments suggest the added value of 3D metrics to complement existing counterparts, reducing ambiguity, and providing advanced insights. Furthermore, we provide a comparative analysis using different levels of detail of 3D building models. Numéro de notice : A2023-076 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2103818 Date de publication en ligne : 01/08/2022 En ligne : https://doi.org/10.1080/13658816.2022.2103818 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101394
in International journal of geographical information science IJGIS > vol 37 n° 1 (January 2023)[article]3D building reconstruction from single street view images using deep learning / Hui En Pang in International journal of applied Earth observation and geoinformation, vol 112 (August 2022)
[article]
Titre : 3D building reconstruction from single street view images using deep learning Type de document : Article/Communication Auteurs : Hui En Pang, Auteur ; Filip Biljecki, Auteur Année de publication : 2022 Article en page(s) : n° 102859 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] empreinte
[Termes IGN] Helsinki
[Termes IGN] image Streetview
[Termes IGN] maillage
[Termes IGN] morphologie urbaine
[Termes IGN] précision géométrique (imagerie)
[Termes IGN] reconstruction 3D du bâti
[Termes IGN] segmentation d'image
[Termes IGN] semis de pointsRésumé : (auteur) 3D building models are an established instance of geospatial information in the built environment, but their acquisition remains complex and topical. Approaches to reconstruct 3D building models often require existing building information (e.g. their footprints) and data such as point clouds, which are scarce and laborious to acquire, limiting their expansion. In parallel, street view imagery (SVI) has been gaining currency, driven by the rapid expansion in coverage and advances in computer vision (CV), but it has not been used much for generating 3D city models. Traditional approaches that can use SVI for reconstruction require multiple images, while in practice, often only few street-level images provide an unobstructed view of a building. We develop the reconstruction of 3D building models from a single street view image using image-to-mesh reconstruction techniques modified from the CV domain. We regard three scenarios: (1) standalone single-view reconstruction; (2) reconstruction aided by a top view delineating the footprint; and (3) refinement of existing 3D models, i.e. we examine the use of SVI to enhance the level of detail of block (LoD1) models, which are common. The results suggest that trained models supporting (2) and (3) are able to reconstruct the overall geometry of a building, while the first scenario may derive the approximate mass of the building, useful to infer the urban form of cities. We evaluate the results by demonstrating their usefulness for volume estimation, with mean errors of less than 10% for the last two scenarios. As SVI is now available in most countries worldwide, including many regions that do not have existing footprint and/or 3D building data, our method can derive rapidly and cost-effectively the 3D urban form from SVI without requiring any existing building information. Obtaining 3D building models in regions that hitherto did not have any, may enable a number of 3D geospatial analyses locally for the first time. Numéro de notice : A2022-544 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.102859 Date de publication en ligne : 17/06/2022 En ligne : https://doi.org/10.1016/j.jag.2022.102859 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101160
in International journal of applied Earth observation and geoinformation > vol 112 (August 2022) . - n° 102859[article]Estimating generalized measures of local neighbourhood context from multispectral satellite images using a convolutional neural network / Alex David Singleton in Computers, Environment and Urban Systems, vol 95 (July 2022)
[article]
Titre : Estimating generalized measures of local neighbourhood context from multispectral satellite images using a convolutional neural network Type de document : Article/Communication Auteurs : Alex David Singleton, Auteur ; Dani Arribas-Bel, Auteur ; John Murray, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101802 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse de groupement
[Termes IGN] analyse en composantes principales
[Termes IGN] apprentissage automatique
[Termes IGN] bâtiment
[Termes IGN] carte d'occupation du sol
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] Grande-Bretagne
[Termes IGN] image multibande
[Termes IGN] image Sentinel-MSI
[Termes IGN] morphologie urbaine
[Termes IGN] pondération
[Termes IGN] processeur graphiqueRésumé : (auteur) The increased availability of high-resolution multispectral imagery captured by remote sensing platforms provides new opportunities for the characterisation and differentiation of urban context. The discovery of generalized latent representations from such data are however under researched within the social sciences. As such, this paper exploits advances in machine learning to implement a new method of capturing measures of urban context from multispectral satellite imagery at a very small area level through the application of a convolutional autoencoder (CAE). The utility of outputs from the CAE is enhanced through the application of spatial weighting, and the smoothed outputs are then summarised using cluster analysis to generate a typology comprising seven groups describing salient patterns of differentiated urban context. The limits of the technique are discussed with reference to the resolution of the satellite data utilised within the study and the interaction between the geography of the input data and the learned structure. The method is implemented within the context of Great Britain, however, is applicable to any location where similar high resolution multispectral imagery are available. Numéro de notice : A2022-370 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101802 Date de publication en ligne : 19/04/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101802 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100606
in Computers, Environment and Urban Systems > vol 95 (July 2022) . - n° 101802[article]GANmapper: geographical data translation / Abraham Noah Wu in International journal of geographical information science IJGIS, vol 36 n° 7 (juillet 2022)PermalinkDeveloping a data-fusing method for mapping fine-scale urban three-dimensional building structure / Xinxin Wu in Sustainable Cities and Society, vol 80 (May 2022)PermalinkExploring the association between street built environment and street vitality using deep learning methods / Yunqin Li in Sustainable Cities and Society, vol 79 (April 2022)PermalinkExploring the relationship between the 2D/3D architectural morphology and urban land surface temperature based on a boosted regression tree: A case study of Beijing, China / Zhen Li in Sustainable Cities and Society, vol 78 (March 2022)PermalinkUnravelling the dynamics behind the urban morphology of port-cities using a LUTI model based on cellular automata / Aditya Tafta Nugraha in Computers, Environment and Urban Systems, vol 92 (March 2022)Permalink3D geovisualization for visual analysis of urban climate / Sidonie Christophe in Cybergeo, European journal of geography, vol 2022 ([01/01/2022])PermalinkCultivating historical heritage area vitality using urban morphology approach based on big data and machine learning / Jiayu Wu in Computers, Environment and Urban Systems, vol 91 (January 2022)PermalinkA spatial model of cognitive distance in cities / Ed Manley in International journal of geographical information science IJGIS, vol 35 n° 11 (November 2021)PermalinkAnthropogenic degradation of dunes within a city: a disappearing feature of the cultural landscape of Toruń (Poland) / Pawel Molewski in Journal of maps, vol 17 n° 4 (October 2021)PermalinkApplication of GIS tools in the measurement analysis of urban spatial layouts using the square grid method / Łukasz Musiaka in ISPRS International journal of geo-information, vol 10 n° 8 (August 2021)Permalink