Descripteur
Termes IGN > 1- Outils - instruments et méthodes > instrument > véhicule > véhicule automobile
véhicule automobileSynonyme(s)AutomobileVoir aussi |
Documents disponibles dans cette catégorie (57)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
A real-time algorithm for continuous navigation in intelligent transportation systems using LiDAR-Gyroscope-Odometer integration / Tarek Hassan in Journal of applied geodesy, vol 17 n° 1 (January 2023)
[article]
Titre : A real-time algorithm for continuous navigation in intelligent transportation systems using LiDAR-Gyroscope-Odometer integration Type de document : Article/Communication Auteurs : Tarek Hassan, Auteur ; Tamer Fath-Allah, Auteur ; Mohamed Elhabiby, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 65 - 77 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Navigation et positionnement
[Termes IGN] capteur à balayage
[Termes IGN] centrale inertielle
[Termes IGN] gyroscope
[Termes IGN] lidar mobile
[Termes IGN] odomètre
[Termes IGN] panne
[Termes IGN] positionnement par GNSS
[Termes IGN] système de transport intelligent
[Termes IGN] temps réel
[Termes IGN] véhicule automobile
[Termes IGN] zone urbaineRésumé : (auteur) Real-time positioning in suburban and urban environments has been a challenging task for many Intelligent Transportation Systems (ITS) applications. In these environments, positioning using Global Navigation Satellite Systems (GNSS) cannot provide continuous solutions due to the blockage of signals in harsh scenarios. Consequently, it is intrinsic to have an independent positioning system capable of providing accurate and reliable positional solutions over GNSS outages. This study exploits the integration of Light Detection and Ranging (LiDAR), gyroscope, and odometer sensors, and a novel real-time algorithm is proposed for this integration. Real field data, collected by a moving land vehicle, is used to test the presented algorithm. Three simulated GNSS outages are introduced in the trajectory such that each outage lasts for five minutes. The results show that using the proposed algorithm can achieve a promising navigation performance in urban environments. In addition, it is shown that the denser environments, that existed over the second and third outages, can provide better positioning accuracies as more features are extracted. The horizontal errors over the first outage, with less density of surroundings, reached 7.74 m (0.43%) error with a mean value of 3.15 m. Moreover, the horizontal errors in the denser environments over the second and third outages reached 4.97 m (0.28%) and 3.99 m (0.23%), with mean values of 2.25 m and 1.89 m, respectively. Numéro de notice : A2023-110 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1515/jag-2022-0022 Date de publication en ligne : 28/11/2022 En ligne : https://doi.org/10.1515/jag-2022-0022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102469
in Journal of applied geodesy > vol 17 n° 1 (January 2023) . - pp 65 - 77[article]Changing mobility patterns in the Netherlands during COVID-19 outbreak / Sander Van Der Drift in Journal of location-based services, vol 16 n° 1 (March 2022)
[article]
Titre : Changing mobility patterns in the Netherlands during COVID-19 outbreak Type de document : Article/Communication Auteurs : Sander Van Der Drift, Auteur ; Luc Wismans, Auteur ; Marie-José Olde-Kalter, Auteur Année de publication : 2022 Article en page(s) : pp 1 - 24 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] bicyclette
[Termes IGN] comportement
[Termes IGN] épidémie
[Termes IGN] estimation bayesienne
[Termes IGN] mobilité territoriale
[Termes IGN] Pays-Bas
[Termes IGN] téléphone intelligent
[Termes IGN] transport
[Termes IGN] transport public
[Termes IGN] travail à domicile
[Termes IGN] véhicule automobileRésumé : (auteur) The COVID-19 outbreak and associated measures taken had an enormous impact on society as well as a disruptive, but not necessarily negative, impact on mobility. The Ministry of Infrastructure and Water Management received the most recent insights from the Dutch Mobility Panel (DMP) on a weekly basis. These insights were used to monitor the travel behaviour and to analyse changes in the behaviour of different groups and usage of modes of transport during COVID-19. The analysis shows an enormous decrease in travel at the beginning of the implementation of the so-called ‘intelligent’ lockdown and gradual increase again towards comparable levels as before this ‘intelligent lockdown, although the distribution over time, motives and used modes has changed. It becomes clear that not everyone needs to travel during peak hours and commuter travel is also not the main reason for the increase in car usage. Furthermore, cycling has shown to be an alternative option for travellers and public transport is hardly used anymore. If it is possible to sustain the lower level of car usage and integrate public transport as an important alternative for travel again, the COVID-19 impact on mobility could have a substantial remaining positive impact on mobility. Numéro de notice : A2022-391 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/17489725.2021.1876259 Date de publication en ligne : 11/03/2021 En ligne : https://doi.org/10.1080/17489725.2021.1876259 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100682
in Journal of location-based services > vol 16 n° 1 (March 2022) . - pp 1 - 24[article]GIS-based employment availabilities by mode of transport in Kuwait / S. Alkheder in Applied geomatics, vol 14 n° 1 (March 2022)
[article]
Titre : GIS-based employment availabilities by mode of transport in Kuwait Type de document : Article/Communication Auteurs : S. Alkheder, Auteur ; Waleed Abdullah, Auteur ; Hussain Al Sayegh, Auteur Année de publication : 2022 Article en page(s) : pp 1 - 15 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] analyse spatiale
[Termes IGN] données socio-économiques
[Termes IGN] établissement d'enseignement
[Termes IGN] Koweit
[Termes IGN] logement
[Termes IGN] réseau de transport
[Termes IGN] système d'information géographique
[Termes IGN] trafic routier
[Termes IGN] transport public
[Termes IGN] travail
[Termes IGN] véhicule automobileRésumé : (auteur) Public transit (PT) has a positive impact on social and environment development in any society. This paper was carried out to analyze the role of GIS in utilizing destination identification as a way to help accomplish a sustainable landscape. The work focused on enhancing work availability considering the transport network. Areas with a higher offer of zero-vehicle lodging units have a better employment availability by travel. Furthermore, areas with a higher offer of single-parent families are at a disadvantage in general occupation openness. In this paper, GIS-based employment availabilities by walking, transit, and automobile were processed for the metropolitan territory. The same was done for work availability among neighboring square gatherings, while regulating built-environment and socio-economic variables. Understanding public travel openness is imperative for encouraging mode movements to reduce auto dependence and is fundamental for the prosperity of non-car households. Also, it is important to know the distribution of facilities such as schools, universities, malls, and other socio-economic places, which helps in rearranging these places in a better way to have effective transit and to reduce road traffic. The accessibility analysis is done through three steps: identifying the spatial distribution in the area, creating buffers around each alternative, and calculating the total number of population and services served by the network. The overall results of this study show that the proposed network will cover more than 50% of school places and workplaces in the area. It will also serve about 840,000 inhabitants, which is 34% of the total population. The previous results make the network accessible to a large number of the area’s residents and will connect them with the main attraction points in the city. Numéro de notice : A2022-215 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s12518-021-00406-y Date de publication en ligne : 18/10/2021 En ligne : https://doi.org/10.1007/s12518-021-00406-y Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100085
in Applied geomatics > vol 14 n° 1 (March 2022) . - pp 1 - 15[article]Deep learning based 2D and 3D object detection and tracking on monocular video in the context of autonomous vehicles / Zhujun Xu (2022)
Titre : Deep learning based 2D and 3D object detection and tracking on monocular video in the context of autonomous vehicles Type de document : Thèse/HDR Auteurs : Zhujun Xu, Auteur ; Eric Chaumette, Directeur de thèse ; Damien Vivet, Directeur de thèse Editeur : Toulouse : Université de Toulouse Année de publication : 2022 Importance : 136 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse en vue de l'obtention du Doctorat de l'Université de Toulouse, spécialité Informatique et TélécommunicationsLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] apprentissage semi-dirigé
[Termes IGN] architecture de réseau
[Termes IGN] détection d'objet
[Termes IGN] échantillonnage de données
[Termes IGN] objet 3D
[Termes IGN] segmentation d'image
[Termes IGN] véhicule automobile
[Termes IGN] vidéo
[Termes IGN] vision par ordinateurIndex. décimale : THESE Thèses et HDR Résumé : (auteur) The objective of this thesis is to develop deep learning based 2D and 3D object detection and tracking methods on monocular video and apply them to the context of autonomous vehicles. Actually, when directly using still image detectors to process a video stream, the accuracy suffers from sampled image quality problems. Moreover, generating 3D annotations is time-consuming and expensive due to the data fusion and large numbers of frames. We therefore take advantage of the temporal information in videos such as the object consistency, to improve the performance. The methods should not introduce too much extra computational burden, since the autonomous vehicle demands a real-time performance.Multiple methods can be involved in different steps, for example, data preparation, network architecture and post-processing. First, we propose a post-processing method called heatmap propagation based on a one-stage detector CenterNet for video object detection. Our method propagates the previous reliable long-term detection in the form of heatmap to the upcoming frame. Then, to distinguish different objects of the same class, we propose a frame-to-frame network architecture for video instance segmentation by using the instance sequence queries. The tracking of instances is achieved without extra post-processing for data association. Finally, we propose a semi-supervised learning method to generate 3D annotations for 2D video object tracking dataset. This helps to enrich the training process for 3D object detection. Each of the three methods can be individually applied to leverage image detectors to video applications. We also propose two complete network structures to solve 2D and 3D object detection and tracking on monocular video. Note de contenu : 1- Introduction
2- Video object detection avec la heatmap propagation (propagation de carte de chaleur)
3- Video instance segmentation with instance sequence queries
4- Semi-supervised learning of monocular 3D object detection with 2D video tracking annotations
5- Conclusions and perspectivesNuméro de notice : 24072 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Informatique et Télécommunications : Toulouse : 2022 DOI : sans En ligne : https://www.theses.fr/2022ESAE0019 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102136 Pose estimation and 3D reconstruction of vehicles from stereo-images using a subcategory-aware shape prior / Maximilian Alexander Coenen in ISPRS Journal of photogrammetry and remote sensing, Vol 181 (November 2021)
[article]
Titre : Pose estimation and 3D reconstruction of vehicles from stereo-images using a subcategory-aware shape prior Type de document : Article/Communication Auteurs : Maximilian Alexander Coenen, Auteur ; Franz Rottensteiner, Auteur Année de publication : 2021 Article en page(s) : pp 27 - 47 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection d'objet
[Termes IGN] estimation de pose
[Termes IGN] modèle stochastique
[Termes IGN] problème inverse
[Termes IGN] reconstruction 3D
[Termes IGN] reconstruction d'objet
[Termes IGN] robotique
[Termes IGN] véhicule automobile
[Termes IGN] vision par ordinateurRésumé : (auteur) The 3D reconstruction of objects is a prerequisite for many highly relevant applications of computer vision such as mobile robotics or autonomous driving. To deal with the inverse problem of reconstructing 3D objects from their 2D projections, a common strategy is to incorporate prior object knowledge into the reconstruction approach by establishing a 3D model and aligning it to the 2D image plane. However, current approaches are limited due to inadequate shape priors and the insufficiency of the derived image observations for a reliable alignment with the 3D model. The goal of this paper is to show how 3D object reconstruction can profit from a more sophisticated shape prior and from a combined incorporation of different observation types inferred from the images. We introduce a subcategory-aware deformable vehicle model that makes use of a prediction of the vehicle type for a more appropriate regularisation of the vehicle shape. A multi-branch CNN is presented to derive predictions of the vehicle type and orientation. This information is also introduced as prior information for model fitting. Furthermore, the CNN extracts vehicle keypoints and wireframes, which are well-suited for model-to-image association and model fitting. The task of pose estimation and reconstruction is addressed by a versatile probabilistic model. Extensive experiments are conducted using two challenging real-world data sets on both of which the benefit of the developed shape prior can be shown. A comparison to state-of-the-art methods for vehicle pose estimation shows that the proposed approach performs on par or better, confirming the suitability of the developed shape prior and probabilistic model for vehicle reconstruction. Numéro de notice : A2021-772 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.07.006 Date de publication en ligne : 14/09/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.07.006 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98829
in ISPRS Journal of photogrammetry and remote sensing > Vol 181 (November 2021) . - pp 27 - 47[article]The point-descriptor-precedence representation for point configurations and movements / Amna Qayyum in International journal of geographical information science IJGIS, vol 35 n° 7 (July 2021)PermalinkStructure-aware completion of photogrammetric meshes in urban road environment / Qing Zhu in ISPRS Journal of photogrammetry and remote sensing, vol 175 (May 2021)PermalinkDeep convolutional neural networks for scene understanding and motion planning for self-driving vehicles / Abdelhak Loukkal (2021)PermalinkA hybrid deep learning–based model for automatic car extraction from high-resolution airborne imagery / Mehdi Khoshboresh Masouleh in Applied geomatics, vol 12 n° 2 (June 2020)PermalinkA method for urban population density prediction at 30m resolution / Krishnachandran Balakrishnan in Cartography and Geographic Information Science, vol 47 n° 3 (May 2020)PermalinkProbabilistic pose estimation and 3D reconstruction of vehicles from stereo images / Maximilian Alexander Coenen (2020)PermalinkScene context-driven vehicle detection in high-resolution aerial images / Chao Tao in IEEE Transactions on geoscience and remote sensing, Vol 57 n° 10 (October 2019)PermalinkDevelopment and evaluation of a deep learning model for real-time ground vehicle semantic segmentation from UAV-based thermal infrared imagery / Mehdi Khoshboresh Masouleh in ISPRS Journal of photogrammetry and remote sensing, vol 155 (September 2019)PermalinkVehicle detection in aerial images / Michael Ying Yang in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 4 (avril 2019)PermalinkRapport d'activité 2018 de l'Institut National de l'Information Géographique et Forestière IGN, 2. Panorama 2018 / Institut national de l'information géographique et forestière (2012 -) (2019)Permalink