Descripteur
Termes IGN > 1- Outils - instruments et méthodes > instrument > véhicule > navire
navireSynonyme(s)BateauVoir aussi |
Documents disponibles dans cette catégorie (43)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Predicting AIS reception using tropospheric propagation forecast and machine learning / Zackary Vanche (2022)
Titre : Predicting AIS reception using tropospheric propagation forecast and machine learning Type de document : Article/Communication Auteurs : Zackary Vanche, Auteur ; Ambroise Renaud, Auteur ; Aldo Napoli, Auteur Editeur : New York : Institute of Electrical and Electronics Engineers IEEE Année de publication : 2022 Projets : 2-Pas d'info accessible - article non ouvert / Conférence : ISAP 2022, IEEE AP-S/USNC-URSI International Symposium on Antennas & Propagation 10/07/2022 Denver Colorado - Etats-Unis Proceedings IEEE Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] apprentissage automatique
[Termes IGN] carte thématique
[Termes IGN] identification automatique
[Termes IGN] navigation maritime
[Termes IGN] navire
[Termes IGN] récepteur
[Termes IGN] troposphèreRésumé : (auteur) The aim of this paper is to present a methodology for modelling and predicting the coverage of an Automatic Identification System (AIS) station based on tropospheric index forecast maps and modelling methods from machine learning. The aim of this work is to cartographically represent the areas in which the AIS signals emitted by ships will be received by a coastal station. This work contributes to the improvement of maritime situational awareness and to the detection of anomalies at sea [1], and in particular to the identification of AIS message falsifications [2] (ubiquity of a vessel by identity theft, falsification of GPS positions and deactivation of AIS). Numéro de notice : C2022-036 Affiliation des auteurs : ENSG+Ext (2020- ) Autre URL associée : vers HAL Thématique : POSITIONNEMENT Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.23919/USNC-URSI52669.2022.9887465 En ligne : https://doi.org/10.23919/USNC-URSI52669.2022.9887465 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101606 Shipborne GNSS acquisition of sea surface heights in the Baltic Sea / Aive Lilibusk in Journal of geodetic science, vol 12 n° 1 (January 2022)
[article]
Titre : Shipborne GNSS acquisition of sea surface heights in the Baltic Sea Type de document : Article/Communication Auteurs : Aive Lilibusk, Auteur ; Sander Varbla, Auteur ; Artu Ellmann, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1 - 21 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] Baltique, mer
[Termes IGN] Continuously Operating Reference Station network
[Termes IGN] hauteurs de mer
[Termes IGN] instrument embarqué
[Termes IGN] navire
[Termes IGN] positionnement cinématique
[Termes IGN] positionnement par GNSS
[Termes IGN] positionnement ponctuel précis
[Termes IGN] surface de la mer
[Vedettes matières IGN] AltimétrieRésumé : (auteur) For determining precise sea surface heights, six marine GNSS (global navigation satellite system) survey campaigns were performed in the eastern Baltic Sea in 2021. Four GNSS antennas were installed on the vessel, the coordinates of which were computed relative to GNSS–CORS (continuously operating reference stations). The GNSS–CORS results are compared to the PPP (precise point positioning)-based results. Better accuracy is associated with the GNSS–CORS postprocessed points; however, the PPP approach provided more accurate results for longer than 40 km baselines. For instance, the a priori vertical accuracy of the PPP solution is, on average, 0.050 ± 0.006 m and more stable along the entire vessel’s survey route. Conversely, the accuracy of CORS-based solutions decreases significantly when the distances from the GNSS–CORS exceed 40 km, whereas the standard deviation between the CORS and PPP-based solutions is up to 0.075 m in these sections. Note that in the harbor (about 4 km from the nearest GNSS–CORS), the standard deviation of vertical differences between the two solutions remains between 0.013 and 0.024 m. In addition, the GNSS antennas situated in different positions on the vessel indicated different measurement accuracies. It is suggested for further studies that at least one GNSS antenna should be mounted above the mass center of the vessel to reduce the effects of the dominating pitch motion during the surveys. Numéro de notice : A2022-530 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1515/jogs-2022-0131 Date de publication en ligne : 23/06/2022 En ligne : https://doi.org/10.1515/jogs-2022-0131 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101076
in Journal of geodetic science > vol 12 n° 1 (January 2022) . - pp 1 - 21[article]PolSAR ship detection based on neighborhood polarimetric covariance matrix / Tao Liu in IEEE Transactions on geoscience and remote sensing, vol 59 n° 6 (June 2021)
[article]
Titre : PolSAR ship detection based on neighborhood polarimetric covariance matrix Type de document : Article/Communication Auteurs : Tao Liu, Auteur ; Ziyuan Yang, Auteur ; Armando Marino, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 4874 - 4887 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] détection d'objet
[Termes IGN] données polarimétriques
[Termes IGN] image radar moirée
[Termes IGN] image Radarsat
[Termes IGN] matrice de covariance
[Termes IGN] navire
[Termes IGN] polarimétrie radar
[Termes IGN] voisinage (relation topologique)Résumé : (auteur) The detection of small ships in polarimetric synthetic aperture radar (PolSAR) images is still a topic for further investigation. Recently, patch detection techniques, such as superpixel-level detection, have stimulated wide interest because they can use the information contained in similarities among neighboring pixels. In this article, we propose a novel neighborhood polarimetric covariance matrix (NPCM) to detect the small ships in PolSAR images, leading to a significant improvement in the separability between ship targets and sea clutter. The NPCM utilizes the spatial correlation between neighborhood pixels and maps the representation for a given pixel into a high-dimensional covariance matrix by embedding spatial and polarization information. Using the NPCM formalism, we apply a standard whitening filter, similar to the polarimetric whitening filter (PWF). We show how the inclusion of neighborhood information improves the performance compared with the traditional polarimetric covariance matrix. However, this is at the expense of a higher computation cost. The theory is validated via the simulated and measured data under different sea states and using different radar platforms. Numéro de notice : A2021-424 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3022181 Date de publication en ligne : 22/09/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3018638 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97780
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 6 (June 2021) . - pp 4874 - 4887[article]Integrated water vapour content retrievals from ship-borne GNSS receivers during EUREC4A / Pierre Bosser in Earth System Science Data, vol 13 n° 4 (April 2021)
[article]
Titre : Integrated water vapour content retrievals from ship-borne GNSS receivers during EUREC4A Type de document : Article/Communication Auteurs : Pierre Bosser , Auteur ; Olivier Bock , Auteur ; Cyrille Flamant, Auteur ; Sandrine Bony, Auteur ; Sabrina Speich, Auteur Année de publication : 2021 Projets : GEMMOC / Bosser, Pierre, VEGAN / Bock, Olivier, EUREC4A / Bock, Olivier Article en page(s) : pp 1499 - 1517 Note générale : bibliographie
projets GEMMOC and VEGAN du CNRS program LEFE/INSU
Both the raw GNSS measurements and the IWV estimates are available through the AERIS data center (https://en.aeris-data.fr/). The digital object identifiers (DOIs) for R/V Atalante IWV and raw datasets are https://doi.org/10.25326/71 (Bosser et al., 2020a) and https://doi.org/10.25326/74 (Bosser et al., 2020d), respectively. The DOIs for the R/V Maria S. Merian IWV and raw datasets are https://doi.org/10.25326/72 (Bosser et al., 2020b) and https://doi.org/10.25326/75 (Bosser et al., 2020e), respectively. The DOIs for the R/V Meteor IWV and raw datasets are https://doi.org/10.25326/73 (Bosser et al., 2020c) and https://doi.org/10.25326/76 (Bosser et al., 2020f), respectively.Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] analyse comparative
[Termes IGN] coordonnées GNSS
[Termes IGN] données météorologiques
[Termes IGN] erreur systématique
[Termes IGN] navire
[Termes IGN] station permanente
[Termes IGN] teneur intégrée en vapeur d'eauRésumé : (auteur) In the framework of the EUREC4A (Elucidating the role of clouds-circulation coupling in climate) campaign that took place in January and February 2020, integrated water vapour (IWV) contents were retrieved over the open Tropical Atlantic Ocean using Global Navigation Satellite Systems (GNSS) data acquired from three research vessels (R/Vs): R/V Atalante, R/V Maria S. Merian, and R/V Meteor. This paper describes the GNSS processing method and compares the GNSS IWV retrievals with IWV estimates from the European Center for Medium-range Weather Forecast (ECMWF) fifth ReAnalysis (ERA5), from the Moderate-Resolution Imaging Spectroradiometer (MODIS) infra-red products, and from terrestrial GNSS stations located along the tracks of the ships. The ship-borne GNSS IWVs retrievals from R/V Atalante and R/V Meteor compare well with ERA5, with small biases (−1.62 kg m−2 for R/V Atalante and +0.65 kg m−2 for R/V Meteor) and a root mean square (RMS) difference about 2.3 kg m−2. The results for the R/V Maria S. Merian are found to be of poorer quality, with RMS difference of 6 kg m−2 which are very likely due to the location of the GNSS antenna on this R/V prone to multipath effects. The comparisons with ground-based GNSS data confirm these results. The comparisons of all three R/V IWV retrievals with MODIS infrared product show large RMS differences of 5–7 kg m−2, reflecting the enhanced uncertainties of this satellite product in the tropics. These ship-borne IWV retrievals are intended to be used for the description and understanding of meteorological phenomena that occurred during the campaign, east of Barbados, Guyana and northern Brazil. Numéro de notice : A2021-064 Affiliation des auteurs : UMR IPGP-Géod+Ext (2020- ) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.5194/essd-13-1499-2021 En ligne : https://doi.org/10.5194/essd-13-1499-2021 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96840
in Earth System Science Data > vol 13 n° 4 (April 2021) . - pp 1499 - 1517[article]Horizontal calibration of vessels with UASs / Casey O'Heran in Marine geodesy, vol 44 n° 2 (March 2021)
[article]
Titre : Horizontal calibration of vessels with UASs Type de document : Article/Communication Auteurs : Casey O'Heran, Auteur ; Brian Calder, Auteur Année de publication : 2021 Article en page(s) : pp 91 - 107 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] balayage laser
[Termes IGN] bathymétrie laser
[Termes IGN] carte bathymétrique
[Termes IGN] centrale inertielle
[Termes IGN] données localisées des bénévoles
[Termes IGN] étalonnage d'instrument
[Termes IGN] modèle numérique de surface
[Termes IGN] navire
[Termes IGN] point d'appui
[Termes IGN] réalité de terrain
[Termes IGN] structure-from-motionRésumé : (auteur) Knowledge of offset vectors from vessel mounted sonars, to systems such as Inertial Measurement Units and Global Navigation Satellite Systems is crucial for accurate ocean mapping applications. Traditional survey methods, such as employing laser scanners or total stations, are used to determine professional vessel offset distances reliably. However, for vessels of opportunity that are collecting volunteer bathymetric data, it is beneficial to consider survey methods that may be less time consuming, less expensive, or which do not involve bringing the vessel into a dry dock. Thus, this article explores two alternative methods that meet this criterion for horizontally calibrating vessels. Unmanned Aircraft Systems (UASs) were used to horizontally calibrate a vessel with both Structure from Motion photogrammetry and aerial lidar while the vessel was moored to a floating dock. Estimates of the horizontal deviations from ground truth, were obtained by comparing the horizontal distances between targets on a vessel, acquired by the UAS methods, to multiple ground truth sources: a survey-grade terrestrial laser scan and fiberglass tape measurements. The investigated methods were able to achieve horizontal deviations on the order of centimeters with the use of Ground Control Points. Numéro de notice : A2021-266 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/01490419.2021.187933 Date de publication en ligne : 04/03/2021 En ligne : https://doi.org/10.1080/01490419.2021.1879330 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97320
in Marine geodesy > vol 44 n° 2 (March 2021) . - pp 91 - 107[article]Passive radar imaging of ship targets with GNSS signals of opportunity / Debora Pastina in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 3 (March 2021)PermalinkModélisation de l’aire de réception d’une antenne AIS en fonction de données d’altitude et de cartes de prévision de propagation d’ondes VHF / Zackary Vanche (2021)PermalinkDeep learning for detecting and classifying ocean objects: application of YoloV3 for iceberg–ship discrimination / Frederik Hass in ISPRS International journal of geo-information, vol 9 n° 12 (December 2020)PermalinkShip detection in SAR images via local contrast of Fisher vectors / Xueqian Wang in IEEE Transactions on geoscience and remote sensing, vol 58 n° 9 (September 2020)PermalinkImproving GNSS-acoustic positioning by optimizing the ship’s track lines and observation combinations / Guanxu Chen in Journal of geodesy, vol 94 n° 6 (June 2020)PermalinkValidation of marine geoid models by utilizing hydrodynamic model and shipborne GNSS profiles / Sander Varbla in Marine geodesy, Vol 43 n° 2 (March 2020)PermalinkGeographies of maritime transport, Ch. 4. Geography versus topology in the evolution of the global container shipping network (1977-2016) / César Ducruet (2020)PermalinkIWV retrieval from shipborne GPS receiver on hydrographic ship Borda [diaporama] / Olivier Bock (2020)PermalinkShip identification and characterization in Sentinel-1 SAR images with multi-task deep learning / Clément Dechesne in Remote sensing, Vol 11 n° 24 (December-2 2019)PermalinkDiscriminating ship from radio frequency interference based on noncircularity and non-gaussianity in sentinel-1 SAR imagery / Xiangguang Leng in IEEE Transactions on geoscience and remote sensing, vol 57 n° 1 (January 2019)Permalink