Descripteur
Documents disponibles dans cette catégorie (55)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Evaluation of GNSS-based volunteered geographic information for assessing visitor spatial distribution within protected areas: A case study of the Bavarian Forest National Park, Germany / Laura Horst in Applied Geography, vol 150 (January 2023)
[article]
Titre : Evaluation of GNSS-based volunteered geographic information for assessing visitor spatial distribution within protected areas: A case study of the Bavarian Forest National Park, Germany Type de document : Article/Communication Auteurs : Laura Horst, Auteur ; Karolina Taczanowska, Auteur ; Florian Porst, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 102825 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] aire protégée
[Termes IGN] ArcGIS
[Termes IGN] Bavière (Allemagne)
[Termes IGN] distribution spatiale
[Termes IGN] données GNSS
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données localisées des bénévoles
[Termes IGN] géodatabase
[Termes IGN] parc naturel national
[Termes IGN] piétonRésumé : (auteur) Systematic monitoring of recreational use in vulnerable ecosystems is crucial to balance human needs and site capacities. Recently, publicly available digital data, including Global Navigation Satellite System-based Volunteered Geographic Information, gained attention as a potential resource depicting visitor movement. However, there is a need to critically assess its reliability for visitor monitoring across countries, regions and available databases. Our research evaluates the usability of GNSS-based VGI-data obtained from three common platforms: GPSies, Outdooractive, and Komoot for assessing the spatial distribution of hikers in the Bavarian Forest National Park. A total sample of 1742 GNSS-tracks uploaded between 2013 and 2018 were compared across data platforms. Additionally, available systematic field counts, carried out between 2013 and 2014 (11 Eco-Counter sensors), were compared to GNSS-based VGI data uploaded within the corresponding period. The comparisons at individual and collective levels (route lengths, kernel density, optimized hotspot analysis along with fishnet-based counts of GNSS-tracks) showed similarities between VGI data platforms. Data obtained from GPSies and Outdooractive displayed a higher correlation with each other than with those obtained from Komoot. Also, for GPSies, there was a significant positive correlation between VGI-data and field count data. Data sample of Outdooractive and Komoot within the specified spatio-temporal frame was too small to compare with available field count data. We highlight the necessity of systematic validation of GNSS-based VGI data resources, being complementary rather than the primary data source in visitor monitoring and recreation planning. Also, systematic long-term visitor monitoring using other methods is crucial to assess the validity of novel data resources, such as GNSS-based VGI. Numéro de notice : A2023-020 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.apgeog.2022.102825 Date de publication en ligne : 25/11/2023 En ligne : https://doi.org/10.1016/j.apgeog.2022.102825 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102220
in Applied Geography > vol 150 (January 2023) . - n° 102825[article]Measuring visual walkability perception using panoramic street view images, virtual reality, and deep learning / Yunqin Li in Sustainable Cities and Society, vol 86 (November 2022)
[article]
Titre : Measuring visual walkability perception using panoramic street view images, virtual reality, and deep learning Type de document : Article/Communication Auteurs : Yunqin Li, Auteur ; Nobuyoshi Yabuki, Auteur ; Tomohiro Fukuda, Auteur Année de publication : 2022 Article en page(s) : n° 104140 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] corrélation
[Termes IGN] image panoramique
[Termes IGN] image Streetview
[Termes IGN] modèle de régression
[Termes IGN] piéton
[Termes IGN] réalité virtuelle
[Termes IGN] scène urbaine
[Termes IGN] segmentation sémantique
[Termes IGN] visionRésumé : (auteur) Measuring perceptions of visual walkability in urban streets and exploring the associations between the visual features of the street built environment that make walking attractive to humans are both theoretically and practically important. Previous studies have used either environmental audits and subjective evaluations that have limitations in terms of cost, time, and measurement scale, or computer-aided audits based on natural street view images (SVIs) but with gaps in real perception. In this study, a virtual reality panoramic image-based deep learning framework is proposed for measuring visual walkability perception (VWP) and then quantifying and visualizing the contributing visual features. A VWP classification deep multitask learning (VWPCL) model was first developed and trained on human ratings of panoramic SVIs in virtual reality to predict VWP in six categories. Second, a regression model was used to determine the degree of correlation of various objects with one of the six VWP categories based on semantic segmentation. Furthermore, an interpretable deep learning model was used to assist in identifying and visualizing elements that contribute to VWP. The experiment validated the accuracy of the VWPCL model for predicting VWP. The results represent a further step in understanding the interplay of VWP and street-level semantics and features. Numéro de notice : A2022-816 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.scs.2022.104140 Date de publication en ligne : 21/08/2022 En ligne : https://doi.org/10.1016/j.scs.2022.104140 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101982
in Sustainable Cities and Society > vol 86 (November 2022) . - n° 104140[article]Modeling human–human interaction with attention-based high-order GCN for trajectory prediction / Yanyan Fang in The Visual Computer, vol 38 n° 7 (July 2022)
[article]
Titre : Modeling human–human interaction with attention-based high-order GCN for trajectory prediction Type de document : Article/Communication Auteurs : Yanyan Fang, Auteur ; Zhiyu Jin, Auteur ; Zhenhua Cui, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 2257 - 2269 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] détection de cible
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] interaction spatiale
[Termes IGN] modèle de simulation
[Termes IGN] objet mobile
[Termes IGN] piéton
[Termes IGN] réseau neuronal de graphes
[Termes IGN] trajet (mobilité)Résumé : (auteur) This paper presents a novel high-order graph convolutional network (GCN) for pedestrian trajectory prediction. Specifically, the walking state of a target pedestrian depends on both its historical trajectory, which encodes its speed, walking direction and acceleration information, as well as the movement of its neighbors. Thus we propose to leverage GCNs to aggregate the trajectory features of the target pedestrian and its neighbors to predict the movement of the target pedestrian. Considering that the movement of the neighbors’ neighbors affects the movement of the target pedestrian’s neighbors, thus indirectly affecting the movement of the target pedestrian, we propose to use a high-order GCN for human–human interaction modelling. Such a high-order GCN considers the target pedestrian’s neighbors as well as its neighbors’ neighbors. Further, a pedestrian avoids collision with others by estimating its locations and its neighbors’ upcoming locations, and it slows down or changes direction if it believes a collision may occur, especially in very crowded scenes. In light of this, we propose to model such anticipation-based decision making behavior as attention and combine it with our high-order GCN. Thus we first roughly estimate the future trajectories of all pedestrians with a simple method. By using the coarse predicted future trajectory and GCN outputs, we calculate the attention in our attention-based high-order GCN and predict future trajectory. Extensive experiments validate the effectiveness of our approach. In addition, our model shows a higher data efficiency. On the ETH&UCY dataset, using only 5% of the training data for each training epoch, our model outperforms the state of the art. Numéro de notice : A2022-507 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s00371-021-02109-2 Date de publication en ligne : 01/07/2021 En ligne : https://doi.org/10.1007/s00371-021-02109-2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101040
in The Visual Computer > vol 38 n° 7 (July 2022) . - pp 2257 - 2269[article]Exploring the association between street built environment and street vitality using deep learning methods / Yunqin Li in Sustainable Cities and Society, vol 79 (April 2022)
[article]
Titre : Exploring the association between street built environment and street vitality using deep learning methods Type de document : Article/Communication Auteurs : Yunqin Li, Auteur ; Nobuyoshi Yabuki, Auteur ; Tomohiro Fukuda, Auteur Année de publication : 2022 Article en page(s) : n° 103656 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] apprentissage profond
[Termes IGN] attractivité (aménagement)
[Termes IGN] bati
[Termes IGN] image Streetview
[Termes IGN] Japon
[Termes IGN] morphologie urbaine
[Termes IGN] OpenStreetMap
[Termes IGN] piéton
[Termes IGN] planification urbaine
[Termes IGN] processus de hiérarchisation analytique
[Termes IGN] régression linéaire
[Termes IGN] scène urbaine
[Termes IGN] segmentation sémantique
[Termes IGN] système d'information géographique
[Termes IGN] urbanisme
[Termes IGN] ville intelligenteRésumé : (auteur) Street vitality has become an essential indicator for evaluating the attractiveness and potential of the sustainable development of urban blocks, and it can be reflected by the type and the frequency of people's pedestrian activities on the street. While it is recognized that street built environment features affect pedestrian behavior and street vitality, quantifying the impact of these characteristics remains inconclusive. This paper proposes an automated deep learning approach to quantitatively explore the association between the street built environment and street vitality. First, we established a deep learning model for street vitality classification for automatic evaluation of street vitality based on the volumes and activities of pedestrians in the street through multiple object tracking and scene classification. Then, we applied semantic segmentation to measure five selected vitality-related street built environment variables. Finally, a linear regression model was applied to evaluate the built environment variables’ significance and effects on street vitality. To verify our method's accuracy and applicability, we selected a commercial complex in Osaka as an illustrative example. The experimental results highlight that street width and transparency have significant positive effects on street vitality. Compared with traditional methods, our approach is feasible, reliable, transferable, and more efficient. Numéro de notice : A2022-266 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article DOI : 10.1016/j.scs.2021.103656 Date de publication en ligne : 10/01/2022 En ligne : https://doi.org/10.1016/j.scs.2021.103656 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100271
in Sustainable Cities and Society > vol 79 (April 2022) . - n° 103656[article]LiDAR-based method for analysing landmark visibility to pedestrians in cities: case study in Kraków, Poland / Krystian Pyka in International journal of geographical information science IJGIS, vol 36 n° 3 (March 2022)
[article]
Titre : LiDAR-based method for analysing landmark visibility to pedestrians in cities: case study in Kraków, Poland Type de document : Article/Communication Auteurs : Krystian Pyka, Auteur ; Radoslaw Piskorski, Auteur ; Aleksandra Jasińska, Auteur Année de publication : 2022 Article en page(s) : pp 476 - 495 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse visuelle
[Termes IGN] canyon urbain
[Termes IGN] Cracovie (Pologne)
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] modèle numérique de surface
[Termes IGN] paysage urbain
[Termes IGN] piéton
[Termes IGN] point de repère
[Termes IGN] scène urbaine
[Termes IGN] semis de points
[Termes IGN] visibilité (optique)
[Termes IGN] visionRésumé : (auteur) We propose a method for analysing landmark visibility from a pedestrian’s perspective. A case study is performed in Kraków, a city with many architectural monuments, where airborne LiDAR is used to model both buildings and urban greenery. The proposed method involves preliminary and detailed stages. The preliminary stage entails an inverse analysis (I–Vis) that departs from the typical visibility analysis to enable the use of landmarks as observers instead of targets. I–Vis results in paths with high landmark visibility. The detailed stage involves the use of a virtual panorama (V-Pan) to determine the visual exposure of the landmarks. Landmarks considered visible by I–Vis are generally consistent with landmarks identified by V-Pan. Discrepancies occur when trees appear in the near field-of-view. In addition, the accuracy of the skyline length and visible landmark surface area is evaluated against ground observations. The obtained results show that V-Pan can evaluate landmark visibility with an accuracy of approximately 75%. The key contributions of the work to visibility analysis of urban landmarks are in the inverse viewshed strategy and evaluation of the visual exposure parameters on LiDAR virtual panoramas. Numéro de notice : A2022-206 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.2015600 Date de publication en ligne : 17/12/2021 En ligne : https://doi.org/10.1080/13658816.2021.2015600 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100021
in International journal of geographical information science IJGIS > vol 36 n° 3 (March 2022) . - pp 476 - 495[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2022031 SL Revue Centre de documentation Revues en salle Disponible Analysis of pedestrian movements and gestures using an on-board camera to predict their intentions / Joseph Gesnouin (2022)PermalinkPedestrian trajectory prediction with convolutional neural networks / Simone Zamboni in Pattern recognition, vol 121 (January 2022)PermalinkSimulation of dispersion effects by considering interactions of pedestrians and bicyclists using an agent space model / Mingwei Liu in Computers, Environment and Urban Systems, vol 91 (January 2022)PermalinkComNet: combinational neural network for object detection in UAV-borne thermal images / Minglei Li in IEEE Transactions on geoscience and remote sensing, vol 59 n° 8 (August 2021)PermalinkPermalinkPermalinkModélisation numérique des paysages sonores urbains / Jonathan Siliézar (2021)PermalinkModélisation et simulation de comportements piétons réalistes en espace partagé avec un véhicule autonome / manon Prédhumeau (2021)PermalinkUsing multi-agent simulation to predict natural crossing points for pedestrians and choose locations for mid-block crosswalks / Egor Smirrnov in Geo-spatial Information Science, vol 23 n° 4 (December 2020)PermalinkComparing pedestrians’ gaze behavior in desktop and in real environments / Weihua Dong in Cartography and Geographic Information Science, Vol 47 n° 5 (September 2020)Permalink