Descripteur
Termes IGN > imagerie > image numérique > pixel > valeur radiométrique > niveau de gris (image)
niveau de gris (image)Voir aussi |
Documents disponibles dans cette catégorie (70)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Automatic detection of thin oil films on water surfaces in ultraviolet imagery / Ming Xie in Photogrammetric record, vol 38 n° 181 (March 2023)
[article]
Titre : Automatic detection of thin oil films on water surfaces in ultraviolet imagery Type de document : Article/Communication Auteurs : Ming Xie, Auteur ; Xiurui Zhang, Auteur ; Ying Li, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 47 - 62 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] détection automatique
[Termes IGN] filtre optique
[Termes IGN] hydrocarbure
[Termes IGN] image AVIRIS
[Termes IGN] marée noire
[Termes IGN] niveau de gris (image)
[Termes IGN] rayonnement ultraviolet
[Termes IGN] segmentation d'image
[Termes IGN] seuillage binaire
[Termes IGN] surface de la merRésumé : (auteur) Among the various remote sensing technologies that have been applied to monitor oil spills on the sea surface, passive ultraviolet (UV) imaging is a controversial one that has raised some disputes in the community of oil spill remote sensing. As a result, the research and applications of oil spill detection using passive UV imaging have not been as developed as other methods. In order to clarify some existing questions on oil spill detection using passive UV remote sensing technology, this paper discusses the needs of thin oil film detection, examines the feasibility of thin oil film detection using passive UV imaging through field experiments under controlled conditions and validates it with the UV imagery derived from the airborne visible/infrared imaging spectrometer (AVIRIS) observation of the Deepwater Horizon oil spill. Two types of fully automatic models are designed to extract the thin oil films on the water surface: (1) a binary classification model based on an adaptive threshold; (2) an unsupervised image segmentation model based on image clustering and greyscale histogram analysis. The two models are tested on the UV imagery obtained through both field experiments and AVIRIS observations. The results indicate that the binary classification model can extract the thin oil films with reasonable accuracy under stable imaging conditions, while the unsupervised image clustering model can robustly detect the thin oil films at the cost of higher computational complexity. These results infer that passive UV imaging is an effective way to detect thin oil films and could be applied to provide early warning at the beginning stage of oil spills and reduce further damage. It may also be applied as a supplementary method for oil spill detection to achieve comprehensive oil spill monitoring. Numéro de notice : A2023-163 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1111/phor.12439 Date de publication en ligne : 09/02/2023 En ligne : https://doi.org/10.1111/phor.12439 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102866
in Photogrammetric record > vol 38 n° 181 (March 2023) . - pp 47 - 62[article]Land use/land cover mapping from airborne hyperspectral images with machine learning algorithms and contextual information / Ozlem Akar in Geocarto international, vol 37 n° 22 ([10/10/2022])
[article]
Titre : Land use/land cover mapping from airborne hyperspectral images with machine learning algorithms and contextual information Type de document : Article/Communication Auteurs : Ozlem Akar, Auteur ; Esra Tunc Gormus, Auteur Année de publication : 2022 Article en page(s) : pp 6643 - 6670 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] carte d'occupation du sol
[Termes IGN] carte de la végétation
[Termes IGN] classification orientée objet
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] filtre de Gabor
[Termes IGN] image hyperspectrale
[Termes IGN] matrice de co-occurrence
[Termes IGN] niveau de gris (image)
[Termes IGN] texture d'image
[Termes IGN] transformation en ondelettes
[Termes IGN] TurquieRésumé : (auteur) Land use and Land cover (LULC) mapping is one of the most important application areas of remote sensing which requires both spectral and spatial resolutions in order to decrease the spectral ambiguity of different land cover types. Airborne hyperspectral images are among those data which perfectly suits to that kind of applications because of their high number of spectral bands and the ability to see small details on the field. As this technology has newly developed, most of the image processing methods are for the medium resolution sensors and they are not capable of dealing with high resolution images. Therefore, in this study a new framework is proposed to improve the classification accuracy of land use/cover mapping applications and to achieve a greater reliability in the process of mapping land use map using high resolution hyperspectral image data. In order to achieve it, spatial information is incorporated together with spectral information by exploiting feature extraction methods like Grey Level Co-occurrence Matrix (GLCM), Gabor and Morphological Attribute Profile (MAP) on dimensionally reduced image with highest accuracy. Then, machine learning algorithms like Random Forest (RF) and Support Vector Machine (SVM) are used to investigate the contribution of texture information in the classification of high resolution hyperspectral images. In addition to that, further analysis is conducted with object based RF classification to investigate the contribution of contextual information. Finally, overall accuracy, producer’s/user’s accuracy, the quantity and allocation based disagreements and location and quantity based kappa agreements are calculated together with McNemar tests for the accuracy assessment. According to our results, proposed framework which incorporates Gabor texture information and exploits Discrete Wavelet Transform based dimensionality reduction method increase the overall classification accuracy up to 9%. Amongst individual classes, Gabor features boosted classification accuracies of all the classes (soil, road, vegetation, building and shadow) to 7%, 6%, 6%, 8%, 9%, and 24% respectively with producer’s accuracy. Besides, 17% and 10% increase obtained in user’s accuracy with MAP (area) feature in classifying road and shadow classes respectively. Moreover, when the object based classification is conducted, it is seen that the OA of pixel based classification is increased further by 1.07%. An increase between 2% and 4% is achieved with producer’s accuracy in soil, vegetation and building classes and an increase between 1% and 3% is achieved by user’s accuracy in soil, road, vegetation and shadow classes. In the end, accurate LULC map is produced with object based RF classification of gabor features added airborne hyperspectral image which is dimensionally reduced with DWT method. Numéro de notice : A2022-729 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2021.1944453 Date de publication en ligne : 09/11/2021 En ligne : https://doi.org/10.1080/10106049.2021.1944453 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101675
in Geocarto international > vol 37 n° 22 [10/10/2022] . - pp 6643 - 6670[article]Investigation of recognition and classification of forest fires based on fusion color and textural features of images / Cong Li in Forests, vol 13 n° 10 (October 2022)
[article]
Titre : Investigation of recognition and classification of forest fires based on fusion color and textural features of images Type de document : Article/Communication Auteurs : Cong Li, Auteur ; Qiang Liu, Auteur ; Binrui Li, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 1719 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse texturale
[Termes IGN] base de données d'images
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image RVB
[Termes IGN] incendie de forêt
[Termes IGN] matrice de co-occurrence
[Termes IGN] motif binaire local
[Termes IGN] niveau de gris (image)Résumé : (auteur) An image recognition and classification method based on fusion color and textural features was studied. Firstly, the suspected forest fire region was segmented via the fusion RGB-YCbCr color spaces. Then, 10 kinds of textural features were extracted by a local binary pattern (LBP) algorithm and 4 kinds of textural features were extracted by a gray-level co-occurrence matrix (GLCM) algorithm from the suspected fire region. In terms of its application, a database of the forest fire textural feature vector of three scenes was constructed, including forest images without fire, forest images with fire, and forest images with fire-like interference. The existence of forest fires can be recognized based on the database via a support vector machine (SVM). The results showed that the method’s recognition rate for forest fires reached 93.15% and that it had a strong robustness with respect to distinguishing fire-like interference, which provides a more effective scheme for forest fire recognition. Numéro de notice : A2022-834 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/f13101719 Date de publication en ligne : 18/10/2022 En ligne : https://doi.org/10.3390/f13101719 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102030
in Forests > vol 13 n° 10 (October 2022) . - n° 1719[article]Effective CBIR based on hybrid image features and multilevel approach / D. Latha in Multimedia tools and applications, vol 81 n° 20 (August 2022)
[article]
Titre : Effective CBIR based on hybrid image features and multilevel approach Type de document : Article/Communication Auteurs : D. Latha, Auteur ; A. Geetha, Auteur Année de publication : 2022 Article en page(s) : pp Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] base de données d'images
[Termes IGN] écart type
[Termes IGN] espace colorimétrique
[Termes IGN] image en couleur
[Termes IGN] image RVB
[Termes IGN] matrice de co-occurrence
[Termes IGN] motif binaire local
[Termes IGN] niveau de gris (image)
[Termes IGN] observation multiniveaux
[Termes IGN] recherche d'image basée sur le contenu
[Termes IGN] saturation de la couleur
[Termes IGN] texture d'image
[Termes IGN] transformation intensité-teinte-saturationRésumé : (auteur) Content based image retrieval (CBIR) process can retrieve images by matching its feature set values. The proposed novel CBIR methodology called Effective CBIR based on hybrid image features and multilevel approach (CBIR_LTP_GLCM) integrates the hybrid features such as color features and texture features, along with multilevel approach. The color features such as mean and standard deviation are adopted in the proposed method to represent the global color properties of an image. This method manipulates the color input-image by processing the Hue, Saturation and Value channels of the HSV color space. This novel work is enriched with the image feature derived from Local Ternary Pattern (LTP) in addition with GLCM. So, the proposed method CBIR_LTP_GLCM is potentially charged with meaningful modifications travelling with color image manipulation and extended image retrieval accuracy with the aid of multilevel approach. The proposed methodology is experimentally compared with the existing recent CBIR versions by using the standard database such as Corel-1 k, and a user contributed database named DB_VEG. Numéro de notice : A2022-291 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s11042-022-12588-7 Date de publication en ligne : 30/03/2022 En ligne : https://doi.org/10.1007/s11042-022-12588-7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100337
in Multimedia tools and applications > vol 81 n° 20 (August 2022) . - pp[article]Éléments pour l'analyse et le traitement d'images : application à l'estimation de la qualité du bois / Rémy Decelle (2022)
Titre : Éléments pour l'analyse et le traitement d'images : application à l'estimation de la qualité du bois Type de document : Thèse/HDR Auteurs : Rémy Decelle, Auteur ; Isabelle Debled-Rennesson, Auteur ; Fleur Longuetaud, Auteur Editeur : Nancy, Metz : Université de Lorraine Année de publication : 2022 Importance : 214 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse présentée pour l'obtention du Doctorat de l'Université de Lorraine, Mention InformatiqueLangues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] aubier
[Termes IGN] cerne
[Termes IGN] classification par nuées dynamiques
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] duramen
[Termes IGN] filtre
[Termes IGN] grume
[Termes IGN] morphologie mathématique
[Termes IGN] niveau de gris (image)
[Termes IGN] optimisation par colonie de fourmis
[Termes IGN] qualité du bois
[Termes IGN] représentation discrète
[Termes IGN] segmentation d'image
[Termes IGN] seuillageIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Dans le contexte du changement climatique et de son atténuation, du développement de la bioéconomie circulaire, et d'une pression accrue qui en découle sur la ressource en bois, un des axes de recherche prioritaire est l'optimisation de la transformation de cette ressource qui peut se faire à différents niveaux. L'objectif ici est d'extraire des informations sur la qualité du bois à partir de l'analyse de sections transversales du grumes ou billons de bois en forêt ou en scierie. Pour estimer cette qualité, plusieurs caractéristiques visibles peuvent être extraites : zones d'aubier et de duramen, position de la moelle et du centre géométrique, le nombre de cernes et leur largeur. Dans un premier temps, nous nous intéressons à la segmentation de la grume dans l'image. Cette segmentation rend plus simple l'analyse des autres caractéristiques et permet de localiser le centre géométrique. Pour cela, nous proposons plusieurs approches. D'abord, des méthodes classiques issues du traitement d'images sont abordées, comme la méthode des K-Means ou les contours actifs. Nous utilisons également des réseaux de neurones convolutifs. Nous montrons l'avantage des réseaux de neurones par rapport à ces deux autres méthodes. La deuxième caractéristique estimée est la zone de duramen (zone centrale plus colorée). Nous proposons une nouvelle couche d'attention pour les réseaux de neurones utilisant la morphologie mathématique moins souvent utilisée. Les couches d'attention ont permis aux réseaux d'être plus performants en se focalisant sur les informations les plus pertinentes. Dans notre cadre, l'objectif de cette couche est double : réduire la quantité de paramètres et augmenter les performances. Notre couche d'attention montre de meilleures performances par rapport à d'autres couches d'attention. Dans un troisième temps, nous proposons d'analyser les cernes. Notre méthode est en trois grandes étapes. D'abord, un lissage directionnel pour rehausser les cernes (tout en gardant au mieux les contours) et réduire à la fois la texture intracernes et les marques de sciage. Puis, un seuillage adaptatif pour déterminer les zones de cernes potentiels. Enfin, un deuxième seuillage afin d'avoir les limites de cernes. À partir de la segmentation finale, l'analyse des cernes (nombre, largeur moyenne, etc.) est rendue possible. Enfin, l'estimation de la position de la moelle est abordée. Nous proposons une nouvelle approche originale basée sur l'algorithme des colonies de fourmis pour estimer la position de la moelle. L'utilisation de cet algorithme permet de s'abstraire d'une étape habituelle, à savoir l'accumulation des normales aux tangentes des cernes. Notre méthode montre de nombreux avantages par rapport aux approches de l'état de l'art, réseaux de neurones inclus. Dans une dernière partie, nous présenterons un travail en géométrie discrète : un filtre directionnel. Il estime les segments les plus longs en tout point d'un ensemble connexe. La présentation de cet outil est fait par le biais d'un filtre. En appliquant ce filtre, nous pouvons estimer des caractéristiques géométriques à l'échelle locale. Cet outil a pour objectif d'être appliqué aux cernes. Note de contenu : Introduction
1- Techniques de segmentation
2- Segmentation : les applications aux bois
3- Nouvelles approches du traitement d’images appliquées au bois
4- Détection de la moelle dans l’image
5- Filtre directionnel discret
6- ConclusionNuméro de notice : 24061 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Informatique : Université de Lorraine : 2022 Organisme de stage : Laboratoire LORIA DOI : sans En ligne : https://hal.univ-lorraine.fr/tel-03794911/document Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102036 PermalinkSemi-automatic extraction of rural roads under the constraint of combined geometric and texture features / Hai Tan in ISPRS International journal of geo-information, vol 10 n° 11 (November 2021)PermalinkRemote sensing image colorization using symmetrical multi-scale DCGAN in YUV color space / Min Wu in The Visual Computer, vol 37 n° 7 (July 2021)PermalinkExtraction of sea ice cover by Sentinel-1 SAR based on support vector machine with unsupervised generation of training data / Xiao-Ming Li in IEEE Transactions on geoscience and remote sensing, vol 59 n° 4 (April 2021)PermalinkExtraction of built-up areas from Landsat-8 OLI data based on spectral-textural information and feature selection using support vector machine method / Vijendra Singh Bramhe in Geocarto international, vol 35 n° 10 ([01/08/2020])PermalinkA water identification method basing on grayscale Landsat 8 OLI images / Zhitian Deng in Geocarto international, vol 35 n° 7 ([15/05/2020])PermalinkA point cloud feature regularization method by fusing judge criterion of field force / Xijiang Chen in IEEE Transactions on geoscience and remote sensing, vol 58 n° 5 (May 2020)PermalinkExtracting impervious surfaces from full polarimetric SAR images in different urban areas / Sara Attarchi in International Journal of Remote Sensing IJRS, vol 41 n° 12 (20 - 30 March 2020)PermalinkRobust multisource remote sensing image registration method based on scene shape similarity / Ming Hao in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 10 (October 2019)PermalinkIndividual tree crown segmentation in tropical peat swamp forest using airborne hyperspectral data / Sitinor Atikah Nordin in Geocarto international, vol 34 n° 11 ([15/08/2019])Permalink