Descripteur
Termes IGN > sciences naturelles > physique > traitement d'image > photogrammétrie > photogrammétrie numérique > orthophotoplan numérique
orthophotoplan numériqueSynonyme(s)orthomosaïque mosaïque d'orthoimagesVoir aussi |
Documents disponibles dans cette catégorie (104)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Generation of high-resolution orthomosaics from historical aerial photographs using Structure-from-motion and Lidar data / Ji Won Suh in Photogrammetric Engineering & Remote Sensing, PERS, vol 89 n° 1 (January 2023)
[article]
Titre : Generation of high-resolution orthomosaics from historical aerial photographs using Structure-from-motion and Lidar data Type de document : Article/Communication Auteurs : Ji Won Suh, Auteur ; William Ouimet, Auteur Année de publication : 2023 Article en page(s) : pp 37 - 46 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie
[Termes IGN] ArcGIS Desktop
[Termes IGN] Connecticut (Etats-Unis)
[Termes IGN] données lidar
[Termes IGN] erreur moyenne quadratique
[Termes IGN] estompage
[Termes IGN] image ancienne
[Termes IGN] MNS lidar
[Termes IGN] orthophotoplan numérique
[Termes IGN] photographie aérienne
[Termes IGN] point d'appui
[Termes IGN] structure-from-motionRésumé : (auteur) This study presents a method to generate historical orthomosaics using Structure-from-Motion (SfM ) photogrammetry, historical aerial photographs, and lidar data, and then analyzes the horizontal accuracy and factors that can affect the quality of historical orthoimagery products made with these approaches. Two sets of historical aerial photographs (1934 and 1951) were analyzed, focused on the town of Woodstock in Connecticut, U.S.A. Ground control points (GCPs) for georeferencing were obtained by overlaying multiple data sets, including lidar elevation data and derivative hillshades, and recent orthoimagery. Root-Mean-Square Error values of check points (CPs ) for 1934 and 1951 orthomosaics without extreme outliers are 0.83 m and 1.37 m, respectively. Results indicate that orthomosaics can be used for standard mapping and geographic information systems (GIS ) work according to the ASPRS 1990 accuracy standard. In addition, results emphasize that three main factors can affect the horizontal accuracy of orthomosaics: (1) types of CPs, (2) the number of tied photos, and (3) terrain. Numéro de notice : A2023-046 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.22-00063R2 Date de publication en ligne : 01/01/2023 En ligne : https://doi.org/10.14358/PERS.22-00063R2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102355
in Photogrammetric Engineering & Remote Sensing, PERS > vol 89 n° 1 (January 2023) . - pp 37 - 46[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2023011 SL Revue Centre de documentation Revues en salle Disponible A deep 2D/3D Feature-Level fusion for classification of UAV multispectral imagery in urban areas / Hossein Pourazar in Geocarto international, vol 37 n° 23 ([15/10/2022])
[article]
Titre : A deep 2D/3D Feature-Level fusion for classification of UAV multispectral imagery in urban areas Type de document : Article/Communication Auteurs : Hossein Pourazar, Auteur ; Farhad Samadzadegan, Auteur ; Farzaneh Dadrass Javan, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 6695 - 6712 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] alignement des données
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] image captée par drone
[Termes IGN] image multibande
[Termes IGN] image proche infrarouge
[Termes IGN] image RVB
[Termes IGN] modèle numérique de surface
[Termes IGN] orthophotoplan numérique
[Termes IGN] zone urbaineRésumé : (auteur) In this paper, a deep convolutional neural network (CNN) is developed to classify the Unmanned Aerial Vehicle (UAV) derived multispectral imagery and normalized digital surface model (DSM) data in urban areas. For this purpose, a multi-input deep CNN (MIDCNN) architecture is designed using 11 parallel CNNs; 10 deep CNNs to extract the features from all possible triple combinations of spectral bands as well as one deep CNN dedicated to the normalized DSM data. The proposed method is compared with the traditional single-input (SI) and double-input (DI) deep CNN designations and random forest (RF) classifier, and evaluated using two independent test datasets. The results indicate that increasing the CNN layers parallelly augmented the classifier’s generalization and reduced overfitting risk. The overall accuracy and kappa value of the proposed method are 95% and 0.93, respectively, for the first test dataset, and 96% and 0.94, respectively, for the second test data set. Numéro de notice : A2022-749 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2021.1959655 Date de publication en ligne : 04/08/2021 En ligne : https://doi.org/10.1080/10106049.2021.1959655 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101741
in Geocarto international > vol 37 n° 23 [15/10/2022] . - pp 6695 - 6712[article]Riparian ecosystems mapping at fine scale: a density approach based on multi-temporal UAV photogrammetric point clouds / Elena Belcore in Remote sensing in ecology and conservation, vol 8 n° 5 (October 2022)
[article]
Titre : Riparian ecosystems mapping at fine scale: a density approach based on multi-temporal UAV photogrammetric point clouds Type de document : Article/Communication Auteurs : Elena Belcore, Auteur ; Melissa Latella, Auteur Année de publication : 2022 Article en page(s) : pp 644 - 655 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] carte de la végétation
[Termes IGN] densité de la végétation
[Termes IGN] détection d'objet
[Termes IGN] forêt ripicole
[Termes IGN] houppier
[Termes IGN] image captée par drone
[Termes IGN] Italie
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] orthophotoplan numérique
[Termes IGN] semis de points
[Termes IGN] structure-from-motionRésumé : (auteur) In recent years, numerous directives worldwide have addressed the conservation and restoration of riparian corridors, activities that rely on continuous vegetation mapping to understand its volumetric features and health status. Mapping riparian corridors requires not only fine-scale resolution but also the coverage of relatively large areas. The use of Unmanned Aerial Vehicles (UAV) allows for meeting both conditions, although the cost-effectiveness of their use is highly influenced by the type of sensor mounted on them. Few works have so far investigated the use of photogrammetric sensors for individual tree crown detection, despite being cheaper than the most common Light Detection and Ranging (LiDAR) ones. This work aims to improve the individual crown detection from UAV-photogrammetric datasets in a two fold way. Firstly, the effectiveness of a new approach that has already achieved interesting results in LiDAR applications was tested for photogrammetric point clouds. The test was carried out by comparing the accuracy achieved by the new approach, which is based on the point density features of the analysed dataset, with those related to the more common local maxima and textural methods. The results indicated the potentiality of the density-based method, which achieved accuracy values (0.76F-score) consistent with the traditional methods (0.49–0.80F-score range) but was less affected by under- and over-fitting. Secondly, the potential improvement of working on intra-annual multi-temporal datasets was assessed by applying the density-based approach to seven different scenarios, three of which were constituted by single-epoch datasets and the remaining given by the joining of the others. The F-score increased from 0.67 to 0.76 when passing from single- to multi-epoch datasets, aligning with the accuracy achieved by the new method when applied to LiDAR data. The results demonstrate the potential of multi-temporal acquisitions when performing individual crown detection from photogrammetric data. Numéro de notice : A2022-879 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1002/rse2.267 Date de publication en ligne : 22/03/2022 En ligne : https://doi.org/10.1002/rse2.267 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102193
in Remote sensing in ecology and conservation > vol 8 n° 5 (October 2022) . - pp 644 - 655[article]True orthophoto generation based on unmanned aerial vehicle images using reconstructed edge points / Mojdeh Ebrahimikia in Photogrammetric record, vol 37 n° 178 (June 2022)
[article]
Titre : True orthophoto generation based on unmanned aerial vehicle images using reconstructed edge points Type de document : Article/Communication Auteurs : Mojdeh Ebrahimikia, Auteur ; Ali Hosseininaveh, Auteur Année de publication : 2022 Article en page(s) : pp 161 - 184 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie
[Termes IGN] apprentissage profond
[Termes IGN] détection de contours
[Termes IGN] détection du bâti
[Termes IGN] distorsion d'image
[Termes IGN] graphe
[Termes IGN] image captée par drone
[Termes IGN] modèle numérique de surface
[Termes IGN] orthophotographie
[Termes IGN] orthophotoplan numérique
[Termes IGN] photogrammétrie aérienne
[Termes IGN] pixel de contour
[Termes IGN] semis de points
[Termes IGN] structure-from-motion
[Termes IGN] zone urbaineRésumé : (auteur) After considering state-of-the-art algorithms, this paper presents a novel method for generating true orthophotos from unmanned aerial vehicle (UAV) images of urban areas. The procedure consists of four steps: 2D edge detection in building regions, 3D edge graph generation, digital surface model (DSM) modification and, finally, true orthophoto and orthomosaic generation. The main contribution of this paper is concerned with the first two steps, in which deep-learning approaches are used to identify the structural edges of the buildings and the estimated 3D edge points are added to the point cloud for DSM modification. Running the proposed method as well as four state-of-the-art methods on two different datasets demonstrates that the proposed method outperforms the existing orthophoto improvement methods by up to 50% in the first dataset and by 70% in the second dataset by reducing true orthophoto distortion in the structured edges of the buildings. Numéro de notice : A2022-517 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1111/phor.12409 Date de publication en ligne : 05/04/2022 En ligne : https://doi.org/10.1111/phor.12409 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101065
in Photogrammetric record > vol 37 n° 178 (June 2022) . - pp 161 - 184[article]Alternative procedure to improve the positioning accuracy of orthomosaic images acquired with Agisoft Metashape and DJI P4 multispectral for crop growth observation / Toshihiro Sakamoto in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 5 (May 2022)
[article]
Titre : Alternative procedure to improve the positioning accuracy of orthomosaic images acquired with Agisoft Metashape and DJI P4 multispectral for crop growth observation Type de document : Article/Communication Auteurs : Toshihiro Sakamoto, Auteur ; Daisuke Ogawa, Auteur ; Satoko Hiura, Auteur ; Nobusuke Iwasaki, Auteur Année de publication : 2022 Article en page(s) : pp 323 - 332 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] bande spectrale
[Termes IGN] blé (céréale)
[Termes IGN] chlorophylle
[Termes IGN] image à haute résolution
[Termes IGN] image captée par drone
[Termes IGN] indice de végétation
[Termes IGN] orthophotoplan numérique
[Termes IGN] point d'appui
[Termes IGN] précision du positionnement
[Termes IGN] rizière
[Termes IGN] structure-from-motionRésumé : (Auteur) Vegetation indices (VIs), such as the green chlorophyll index and normalized difference vegetation index, are calculated from visible and near-infrared band images for plant diagnosis in crop breeding and field management. The DJI P4 Multispectral drone combined with the Agisoft Metashape Structure from Motion/Multi View Stereo software is some of the most cost-effective equipment for creating high-resolution orthomosaic VI images. However, the manufacturer's procedure results in remarkable location estimation inaccuracy (average error: 3.27–3.45 cm) and alignment errors between spectral bands (average error: 2.80–2.84 cm). We developed alternative processing procedures to overcome these issues, and we achieved a higher positioning accuracy (average error: 1.32–1.38 cm) and better alignment accuracy between spectral bands (average error: 0.26–0.32 cm). The proposed procedure enables precise VI analysis, especially when using the green chlorophyll index for corn, and may help accelerate the application of remote sensing techniques to agriculture. Numéro de notice : A2022-528 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.21-00064R2 Date de publication en ligne : 01/05/2022 En ligne : https://doi.org/10.14358/PERS.21-00064R2 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101379
in Photogrammetric Engineering & Remote Sensing, PERS > vol 88 n° 5 (May 2022) . - pp 323 - 332[article]Exemplaires(2)
Code-barres Cote Support Localisation Section Disponibilité 105-2022052 SL Revue Centre de documentation Revues en salle Disponible 105-2022051 SL Revue Centre de documentation Revues en salle Disponible Unveiling the complex canopy spatial structure of a Mediterranean old-growth beech (Fagus sylvatica L.) forest from UAV observations / Francesco Solano in Ecological indicators, vol 138 (May 2022)PermalinkAutomated inventory of broadleaf tree plantations with UAS imagery / Aishwarya Chandrasekaran in Remote sensing, vol 14 n° 8 (April-2 2022)PermalinkDetection of windthrown tree stems on UAV-orthomosaics using U-Net convolutional networks / Stefan Reder in Remote sensing, vol 14 n° 1 (January-1 2022)PermalinkAutomatic building detection with polygonizing and attribute extraction from high-resolution images / Samitha Daranagama in ISPRS International journal of geo-information, vol 10 n° 9 (September 2021)PermalinkApport des méthodes : imagerie drone, LiDAR et imagerie hyperspectrale pour l’étude du littoral vendéen / Mathis Baudis (2021)PermalinkQuality assessment of photogrammetric methods - A workflow for reproducible UAS orthomosaics / Marvin Ludwig in Remote sensing, vol 12 n° 22 (December-1 2020)PermalinkModeling strawberry biomass and leaf area using object-based analysis of high-resolution images / Zhen Guan in ISPRS Journal of photogrammetry and remote sensing, vol 163 (May 2020)PermalinkStatistical assessment of cartographic product from photogrammetry and fixed-wing UAV acquisition / Ademir Marques Junior in European journal of remote sensing, vol 53 n° 1 (2020)PermalinkSegmenting mangrove ecosystems drone images using SLIC superpixels / Edward Zimudzi in Geocarto international, vol 34 n° 14 ([30/10/2019])PermalinkUnmanned aerial vehicles (UAVs) for monitoring macroalgal biodiversity: comparison of RGB and multispectral imaging sensors for biodiversity assessments / Leigh Tait in Remote sensing, vol 11 n° 19 (October-1 2019)Permalink