Descripteur
Termes IGN > informatique > intelligence artificielle > apprentissage automatique > apprentissage profond > réseau neuronal artificiel > Perceptron multicouche
Perceptron multicoucheSynonyme(s)MLP |
Documents disponibles dans cette catégorie (33)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
PSSNet: Planarity-sensible Semantic Segmentation of large-scale urban meshes / Weixiao Gao in ISPRS Journal of photogrammetry and remote sensing, vol 196 (February 2023)
[article]
Titre : PSSNet: Planarity-sensible Semantic Segmentation of large-scale urban meshes Type de document : Article/Communication Auteurs : Weixiao Gao, Auteur ; Liangliang Nan, Auteur ; Bas Boom, Auteur ; Hugo Ledoux, Auteur Année de publication : 2023 Article en page(s) : pp 32 - 44 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] analyse de scène 3D
[Termes IGN] champ aléatoire de Markov
[Termes IGN] classification dirigée
[Termes IGN] contour
[Termes IGN] maillage
[Termes IGN] Perceptron multicouche
[Termes IGN] réseau neuronal de graphes
[Termes IGN] scène urbaine
[Termes IGN] segmentation sémantiqueRésumé : (Auteur) We introduce a novel deep learning-based framework to interpret 3D urban scenes represented as textured meshes. Based on the observation that object boundaries typically align with the boundaries of planar regions, our framework achieves semantic segmentation in two steps: planarity-sensible over-segmentation followed by semantic classification. The over-segmentation step generates an initial set of mesh segments that capture the planar and non-planar regions of urban scenes. In the subsequent classification step, we construct a graph that encodes the geometric and photometric features of the segments in its nodes and the multi-scale contextual features in its edges. The final semantic segmentation is obtained by classifying the segments using a graph convolutional network. Experiments and comparisons on two semantic urban mesh benchmarks demonstrate that our approach outperforms the state-of-the-art methods in terms of boundary quality, mean IoU (intersection over union), and generalization ability. We also introduce several new metrics for evaluating mesh over-segmentation methods dedicated to semantic segmentation, and our proposed over-segmentation approach outperforms state-of-the-art methods on all metrics. Our source code is available at https://github.com/WeixiaoGao/PSSNet. Numéro de notice : A2023-064 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.12.020 Date de publication en ligne : 02/01/2023 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.12.020 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102399
in ISPRS Journal of photogrammetry and remote sensing > vol 196 (February 2023) . - pp 32 - 44[article]A geometry-aware attention network for semantic segmentation of MLS point clouds / Jie Wan in International journal of geographical information science IJGIS, vol 37 n° 1 (January 2023)
[article]
Titre : A geometry-aware attention network for semantic segmentation of MLS point clouds Type de document : Article/Communication Auteurs : Jie Wan, Auteur ; Yongyang Xu, Auteur ; Qinjun Qiu, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 138 - 161 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] corrélation
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] figure géométrique
[Termes IGN] fonction de perte
[Termes IGN] graphe
[Termes IGN] Perceptron multicouche
[Termes IGN] scène urbaine
[Termes IGN] segmentation sémantique
[Termes IGN] semis de pointsRésumé : (auteur) Semantic segmentation of mobile laser scanning (MLS) point clouds can provide meaningful 3 D semantic information of urban facilities for various applications. However, it still remains a challenge to extract accurate 3 D semantic information from MLS point cloud data due to its irregular 3 D geometric structure in a large-scale outdoor scene. To this end, this study develops a geometry-aware attention point network (GAANet) with geometric properties of the point cloud as a reference. Specifically, the proposed method first builds a graph-like region for each input point to establish the geometric correlation toward its neighbors for robustly descripting local geometry-aware features. Thereafter, the method introduces a novel multi-head attention mechanism to efficiently learn local discriminative features on the constructed graphs and a feature combination operation to capture both local and global geometric dependencies inside fused point features for significantly facilitating the segmentation of small or incomplete 3 D objects at point-level. Finally, an adaptive loss function is appended to handle class imbalance for the overall performance improvement. The validation experiments on two challenging benchmarks demonstrate the effectiveness and powerful generation ability of the proposed method, which achieves state-of-the-art performance with mean IoU of 65.09% and 95.20% in the Toronto-3D and Oakland 3-D MLS dataset, respectively. Numéro de notice : A2023-038 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/13658816.2022.2111572 Date de publication en ligne : 24/08/2022 En ligne : https://doi.org/10.1080/13658816.2022.2111572 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102309
in International journal of geographical information science IJGIS > vol 37 n° 1 (January 2023) . - pp 138 - 161[article]Multi-information PointNet++ fusion method for DEM construction from airborne LiDAR data / Hong Hu in Geocarto international, vol 38 n° 1 ([01/01/2023])
[article]
Titre : Multi-information PointNet++ fusion method for DEM construction from airborne LiDAR data Type de document : Article/Communication Auteurs : Hong Hu, Auteur ; Guanghe Zhang, Auteur ; Jianfeng Ao, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 2153929 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] apprentissage profond
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] filtrage de points
[Termes IGN] image RVB
[Termes IGN] Kappa de Cohen
[Termes IGN] modèle numérique de surface
[Termes IGN] Perceptron multicouche
[Termes IGN] segmentation
[Termes IGN] semis de pointsRésumé : (auteur) Airborne light detection and ranging (LiDAR) is a popular technology in remote sensing that can significantly improve the efficiency of digital elevation model (DEM) construction. However, it is challenging to identify the real terrain features in complex areas using LiDAR data. To solve this problem, this work proposes a multi-information fusion method based on PointNet++ to improve the accuracy of DEM construction. The RGB data and normalized coordinate information of the point cloud was added to increase the number of channels on the input side of the PointNet++ neural network, which can improve the accuracy of the classification during feature extraction. Low and high density point clouds obtained from the International Society for Photogrammetry and Remote Sensing (ISPRS) and the United States Geological Survey (USGS) were used to test this proposed method. The results suggest that the proposed method improves the Kappa coefficient by 8.81% compared to PointNet++. The type I error was reduced by 2.13%, the type II error was reduced by 8.29%, and the total error was reduced by 2.52% compared to the conventional algorithm. Therefore, it is possible to conclude that the proposed method can obtain DEMs with higher accuracy. Numéro de notice : A2023-056 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/10106049.2022.2153929 Date de publication en ligne : 23/12/2022 En ligne : https://doi.org/10.1080/10106049.2022.2153929 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102389
in Geocarto international > vol 38 n° 1 [01/01/2023] . - n° 2153929[article]Updating and backdating analyses for mitigating uncertainties in land change modeling: a case study of the Ci Kapundung upper water catchment area, Java Island, Indonesia / Medria Shekar Rani in International journal of geographical information science IJGIS, vol 36 n° 12 (December 2022)
[article]
Titre : Updating and backdating analyses for mitigating uncertainties in land change modeling: a case study of the Ci Kapundung upper water catchment area, Java Island, Indonesia Type de document : Article/Communication Auteurs : Medria Shekar Rani, Auteur ; Ross Cameron, Auteur ; Olaf Schrott, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 2549 - 2562 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] automate cellulaire
[Termes IGN] bassin hydrographique
[Termes IGN] carte thématique
[Termes IGN] changement d'occupation du sol
[Termes IGN] Java (île de)
[Termes IGN] mise à jour
[Termes IGN] modèle de Markov
[Termes IGN] modélisation spatiale
[Termes IGN] Perceptron multicoucheRésumé : (auteur) In developing countries, data gaps are common and lead to uncertainties in land cover change analysis. This study demonstrates how to mitigate uncertainties in modeling land change in the Ci Kapundung upper water catchment area by comparing the outcomes of two simulation phases. A conventional cellular automata (CA)–Markov model was complemented with a multilayer perceptron (MLP) to project future land cover maps in the study area. The CA–Markov–MLP model results in high uncertainties in forested sites where a data gap is apparent in the input data (land cover maps and driver variables) and parameters. The results show that the model accuracy is improved from 47.90% in the first phase to 81.36% in the second phase. Both first and second phases integrate six demographic–economic and environmental drivers in the modeling, but the second phase also incorporates an updating and backdating analysis to revise the base-maps. This study suggests that uncertainties can be mitigated by linking such base-map revision process with the updating and backdating analyses using remote sensing datasets retrieved at different times. Numéro de notice : A2022-845 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2103820 Date de publication en ligne : 28/07/2022 En ligne : https://doi.org/10.1080/13658816.2022.2103820 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102076
in International journal of geographical information science IJGIS > vol 36 n° 12 (December 2022) . - pp 2549 - 2562[article]Point2Roof: End-to-end 3D building roof modeling from airborne LiDAR point clouds / Li Li in ISPRS Journal of photogrammetry and remote sensing, vol 193 (November 2022)
[article]
Titre : Point2Roof: End-to-end 3D building roof modeling from airborne LiDAR point clouds Type de document : Article/Communication Auteurs : Li Li, Auteur ; Nan Song, Auteur ; Fei Sun, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 17 - 28 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage profond
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] modélisation 3D
[Termes IGN] Perceptron multicouche
[Termes IGN] primitive géométrique
[Termes IGN] reconstruction 3D du bâti
[Termes IGN] semis de points
[Termes IGN] toitRésumé : (auteur) Three-dimensional (3D) building roof reconstruction from airborne LiDAR point clouds is an important task in photogrammetry and computer vision. To automatically reconstruct the 3D building models at Level of Detail 2 (LoD-2) from airborne LiDAR point clouds, the data-driven approaches usually need to be performed in two steps: geometric primitive extraction and roof structure inference. Obviously, the traditional approaches are not end-to-end, the accumulated errors in different stages cannot be avoided and the final 3D roof models may not be optimal. In addition, the results of 3D roof models largely depend on the accuracy of geometric primitives (planes, lines, etc.). To solve these problems, we present a deep learning-based approach to directly reconstruct building roofs from airborne LiDAR point clouds, named Point2Roof. In our method, we start by extracting the deep features for each input point using PointNet++. Then, we identify a set of candidate corner points from the input point clouds using the extracted deep features. In addition, we also regress the offset for each candidate corner point to refine their locations. After that, these candidates are clustered into a set of initial vertices, and we further refine their locations to obtain the final accurate vertices. Finally, we propose a Paired Point Attention (PPA) module to predict the true model edges from an exhaustive set of candidate edges between the vertices. Unlike traditional roof modeling approaches, the proposed Point2Roof is end-to-end. However, due to the lack of a building reconstruction dataset, we construct a large-scale synthetic dataset to verify the effectiveness and robustness of the proposed Point2Roof. The experimental results conducted on the synthetic benchmark demonstrate that the proposed Point2Roof significantly outperforms the traditional roof modeling approaches. The experiments also show that the network trained on the synthetic dataset can be applied to the real point clouds after fine-tuning the trained model on a small real dataset. The large-scale synthetic dataset, the small real dataset and the source code of our approach are publicly available in https://github.com/Li-Li-Whu/Point2Roof. Numéro de notice : A2022-745 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.08.027 Date de publication en ligne : 10/09/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.08.027 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101728
in ISPRS Journal of photogrammetry and remote sensing > vol 193 (November 2022) . - pp 17 - 28[article]Estimating urban functional distributions with semantics preserved POI embedding / Weiming Huang in International journal of geographical information science IJGIS, vol 36 n° 10 (October 2022)PermalinkEvaluation of Landsat 8 image pansharpening in estimating soil organic matter using multiple linear regression and artificial neural networks / Abdelkrim Bouasria in Geo-spatial Information Science, vol 25 n° 3 (October 2022)PermalinkBeyond single receptive field: A receptive field fusion-and-stratification network for airborne laser scanning point cloud classification / Yongqiang Mao in ISPRS Journal of photogrammetry and remote sensing, vol 188 (June 2022)PermalinkDiffusionNet: discretization agnostic learning on surfaces / Nicholas Sharp in ACM Transactions on Graphics, TOG, Vol 41 n° 3 (June 2022)PermalinkPrecise crop classification of hyperspectral images using multi-branch feature fusion and dilation-based MLP / Haibin Wu in Remote sensing, vol 14 n° 11 (June-1 2022)PermalinkWood decay detection in Norway spruce forests based on airborne hyperspectral and ALS data / Michele Dalponte in Remote sensing, vol 14 n° 8 (April-2 2022)PermalinkDétection des prairies de fauche et estimation des périodes de fauche par télédétection / Emma Seneschal (2022)PermalinkTwo hidden layer neural network-based rotation forest ensemble for hyperspectral image classification / Laxmi Narayana Eeti in Geocarto international, vol 36 n° 16 ([01/09/2021])PermalinkA multi-layer perceptron neural network to mitigate the interference of time synchronization attacks in stationary GPS receivers / N. Orouji in GPS solutions, vol 25 n° 3 (July 2021)PermalinkA framework for classification of volunteered geographic data based on user’s need / Nazila Mohammadi in Geocarto international, vol 36 n° 11 ([15/06/2021])PermalinkApplication of a multi-layer artificial neural network in a 3-D global electron density model using the long-term observations of COSMIC, Fengyun-3C, and Digisonde / Li Wang in Space weather, vol 19 n° 3 (March 2021)PermalinkEvaluation of a neural network with uncertainty for detection of ice and water in SAR imagery / Nazanin Asadi in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)PermalinkPanoptic segmentation of satellite image time series with convolutional temporal attention networks / Vivien Sainte Fare Garnot (2021)PermalinkSupplementary material for: Panoptic segmentation of satellite image time series with convolutional temporal attention networks / Vivien Sainte Fare Garnot (2021)PermalinkClassification of hyperspectral and LiDAR data using coupled CNNs / Renlong Hang in IEEE Transactions on geoscience and remote sensing, vol 58 n° 7 (July 2020)PermalinkComparison of spatial modelling approaches to simulate urban growth: a case study on Udaipur city, India / Biswajit Mondal in Geocarto international, vol 35 n° 4 ([15/03/2020])PermalinkSpatially constrained regionalization with multilayer perceptron / Michael Govorov in Transactions in GIS, Vol 23 n° 5 (October 2019)PermalinkSoil roughness retrieval from TerraSar-X data using neural network and fractal method / Mohammad Maleki in Advances in space research, vol 64 n°5 (1 September 2019)PermalinkUsing LiDAR-modified topographic wetness index, terrain attributes with leaf area index to improve a single-tree growth model in south-eastern Finland / Cheikh Mohamedou in Forestry, an international journal of forest research, vol 92 n° 3 (July 2019)PermalinkPermalink