Descripteur
Termes IGN > sciences naturelles > physique > optique > optique physique > radiométrie > rayonnement électromagnétique > rayonnement infrarouge > rayonnement proche infrarouge
rayonnement proche infrarougeVoir aussi |
Documents disponibles dans cette catégorie (78)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
A simple approach to enhance the TROPOMI solar-induced chlorophyll fluorescence product by combining with canopy reflected radiation at near-infrared band / Xinjie Liu in Remote sensing of environment, vol 284 (January 2023)
[article]
Titre : A simple approach to enhance the TROPOMI solar-induced chlorophyll fluorescence product by combining with canopy reflected radiation at near-infrared band Type de document : Article/Communication Auteurs : Xinjie Liu, Auteur ; Liangyun Liu, Auteur ; Cédric Bacour, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 113341 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] canopée
[Termes IGN] chlorophylle
[Termes IGN] fluorescence
[Termes IGN] image Sentinel-5P-TROPOMI
[Termes IGN] image Terra-MODIS
[Termes IGN] production primaire brute
[Termes IGN] rayonnement proche infrarouge
[Termes IGN] réflectance de surface
[Termes IGN] réflectance végétaleRésumé : (auteur) Satellite-based data of solar-induced chlorophyll fluorescence (SIF) and the near-infrared radiation reflected by vegetation (NIRvP) are being increasingly used for the estimation of vegetation gross primary product (GPP) at the global scale. Although SIF contains more physiological information than NIRvP, NIRvP can have higher data quality and spatio-temporal resolution. Therefore, the two variables can be considered complementary for GPP monitoring. Here, we propose a simple framework to combine SIF and NIRvP data from different data sources to generate an enhanced SIF product (eSIF). The original SIF data comes from the TROPOMI instrument onboard the Sentinel-5P mission, whereas NIRvP data are derived from MODIS spectral reflectance and ERA5 reanalysis data. The resulting eSIF product has a spatial resolution of 0.05° and a temporal resolution of 8 days, as well as a higher signal-to-noise ratio and a lower angular dependency than the original TROPOMI SIF data. Our results demonstrate that eSIF has similar spatial patterns to the original SIF but is more spatially continuous and less noisy. Comparisons with the FLUXCOM global GPP product show that eSIF has a more universal relationship with GPP than NIRvP for different grass/crop plant functional types (the coefficients of variation are 18.9% for slopes of GPP to eSIF and 27.3% for slopes of GPP to NIRvP), but NIRvP outperforms eSIF for tracking GPP for forest PFTs exclude BoENF. Moreover, eSIF is able to better track the seasonal variations in GPP related to environmental stresses. This study highlights that our methodology based on the combination of SIF and NIRvP is a promising approach for better monitoring of GPP. Numéro de notice : A2023-017 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.rse.2022.113341 Date de publication en ligne : 07/11/2022 En ligne : https://doi.org/10.1016/j.rse.2022.113341 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102151
in Remote sensing of environment > vol 284 (January 2023) . - n° 113341[article]Attributs de texture extraits d'images multispectrales acquises en conditions d'éclairage non contrôlées : application à l'agriculture de précision / Anis Amziane (2022)
Titre : Attributs de texture extraits d'images multispectrales acquises en conditions d'éclairage non contrôlées : application à l'agriculture de précision Type de document : Thèse/HDR Auteurs : Anis Amziane, Auteur ; Ludovic Macaire, Directeur de thèse Editeur : Lille : Université de Lille Année de publication : 2022 Importance : 214 p. Format : 21 x 30 cm Note générale : Bibliographie
Thèse pour obtenir le grade de Docteur de l'Université de Lille, spécialité Automatique, Génie Informatique, Traitement du Signal et des ImagesLangues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] agriculture de précision
[Termes IGN] bande spectrale
[Termes IGN] classification dirigée
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection automatique
[Termes IGN] éclairage
[Termes IGN] exitance spectrale
[Termes IGN] extraction de la végétation
[Termes IGN] rayonnement proche infrarouge
[Termes IGN] reconnaissance d'objets
[Termes IGN] réflectance végétale
[Termes IGN] signature spectraleIndex. décimale : THESE Thèses et HDR Résumé : (auteur) The main objective of this work is to develop an automatic recognition system of crop and weed plants in field conditions. In Chapter 2 we describe the formation of multispectral radiance images under the Lambertian surface assumption and the different devices that can be used to acquire such images. We then provide a detailed description of the multispectral camera used in this study. Because radiance multispectral images are acquired under varying illumination, we propose an original multispectral image formation model that takes the variation of illumination conditions into account. In chapter 3, we estimate the reflectance as an illumination-invariant spectral signature. First, we present state-of-the-art methods that can be used to estimate the reflectance from multispectral images. We then introduce the reference state-of-the-art method for reflectance estimation and de- scribe our proposed method for reflectance estimation under varying illumination. Chapter 4 focuses on estimated reflectance assessment. The quality of reflectance estimated by our method is evaluated against state-of-the-art methods, and its contribution to supervised crop/weed recognition is demonstrated. Chapter 5 addresses the dimension reduction issue. The acquired multispectral images are composed of a high number of spectral channels, whose analysis is memory and time consuming. Moreover, spectral bands associated to these channels may be redundant or contain highly correlated spectral information. Therefore, we select the best spectral bands for crop/weed classification and use them to specify a camera suited for crop/weed recognition.Chapter 6 deals with the problem of spatio-spectral feature extraction from multispectral images. We propose an approach that extracts both spatial and spectral information at reduced computation costs based on a CNN. Its contribution to crop/weed recognition is demonstrated. Note de contenu : 1- Introduction
2- Multispectral imaging
3- Reflectance estimation
4- Reflectance estimation assessment
5- dimension reduction
6- Raw textures features for crop/weed recognition
ConclusionNuméro de notice : 24102 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Organisme de stage : Laboratoire Cristal (Lille) DOI : sans En ligne : https://www.theses.fr/2022ULILB020 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102577 Downscaling MODIS spectral bands using deep learning / Rohit Mukherjee in GIScience and remote sensing, vol 58 n° 8 (2021)
[article]
Titre : Downscaling MODIS spectral bands using deep learning Type de document : Article/Communication Auteurs : Rohit Mukherjee, Auteur ; Desheng Liu, Auteur Année de publication : 2021 Article en page(s) : pp 1300 - 1315 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] bande spectrale
[Termes IGN] image à basse résolution
[Termes IGN] image Terra-MODIS
[Termes IGN] image thermique
[Termes IGN] rayonnement proche infrarouge
[Termes IGN] réduction d'échelle
[Termes IGN] résolution multipleRésumé : (auteur) MODIS sensors are widely used in a broad range of environmental studies, many of which involve joint analysis of multiple MODIS spectral bands acquired at disparate spatial resolutions. To extract land surface information from multi-resolution MODIS spectral bands, existing studies often downscale lower resolution (LR) bands to match the higher resolution (HR) bands based on simple interpolation or more advanced statistical modeling. Statistical downscaling methods rely on the functional relationship between the LR spectral bands and HR spatial information, which may vary across different land surface types, making statistical downscaling methods less robust. In this paper, we propose an alternative approach based on deep learning to downscale 500 m and 1000 m spectral bands of MODIS to 250 m without additional spatial information. We employ a superresolution architecture based on an encoder decoder network. This deep learning-based method uses a custom loss function and a self-attention layer to preserve local and global spatial relationships of the predictions. We compare our approach with a statistical method specifically developed for downscaling MODIS spectral bands, an interpolation method widely used for downscaling multi-resolution spectral bands, and a deep learning superresolution architecture previously used for downscaling satellite imagery. Results show that our deep learning method outperforms on almost all spectral bands both quantitatively and qualitatively. In particular, our deep learning-based method performs very well on the thermal bands due to the larger scale difference between the input and target resolution. This study demonstrates that our proposed deep learning-based downscaling method can maintain the spatial and spectral fidelity of satellite images and contribute to the integration and enhancement of multi-resolution satellite imagery. Numéro de notice : A2021-124 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/15481603.2021.1984129 Date de publication en ligne : 26/10/2021 En ligne : https://doi.org/10.1080/15481603.2021.1984129 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99309
in GIScience and remote sensing > vol 58 n° 8 (2021) . - pp 1300 - 1315[article]Spectral reflectance estimation of UAS multispectral imagery using satellite cross-calibration method / Saket Gowravaram in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 10 (October 2021)
[article]
Titre : Spectral reflectance estimation of UAS multispectral imagery using satellite cross-calibration method Type de document : Article/Communication Auteurs : Saket Gowravaram, Auteur ; Haiyang Chao, Auteur ; Andrew Molthan, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 735 - 746 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] aéronef
[Termes IGN] distribution du coefficient de réflexion bidirectionnelle BRDF
[Termes IGN] étalonnage croisé
[Termes IGN] forêt
[Termes IGN] image captée par drone
[Termes IGN] image Landsat-8
[Termes IGN] image multibande
[Termes IGN] image proche infrarouge
[Termes IGN] Kansas (Etats-Unis ; état)
[Termes IGN] orthoimage
[Termes IGN] orthorectification
[Termes IGN] prairie
[Termes IGN] rayonnement proche infrarouge
[Termes IGN] réflectance spectraleRésumé : (Auteur) This paper introduces a satellite-based cross-calibration (SCC) method for spectral reflectance estimation of unmanned aircraft system (UAS) multispectral imagery. The SCC method provides a low-cost and feasible solution to convert high-resolution UAS images in digital numbers (DN) to reflectance when satellite data is available. The proposed method is evaluated using a multispectral data set, including orthorectified KHawk UAS DN imagery and Landsat 8 Operational Land Imager Level-2 surface reflectance (SR) data over a forest/grassland area. The estimated UAS reflectance images are compared with the National Ecological Observatory Network's imaging spectrometer (NIS) SR data for validation. The UAS reflectance showed high similarities with the NIS data for the near-infrared and red bands with Pearson's r values being 97 and 95.74, and root-mean-square errors being 0.0239 and 0.0096 over a 32-subplot hayfield. Numéro de notice : A2021-676 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.20-00091R2 En ligne : https://doi.org/10.14358/PERS.20-00091R2 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98863
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 10 (October 2021) . - pp 735 - 746[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2021101 SL Revue Centre de documentation Revues en salle Disponible Local color and morphological image feature based vegetation identification and its application to human environment street view vegetation mapping, or how green is our county? / Istvan G. Lauko in Geo-spatial Information Science, vol 23 n° 3 (September 2020)
[article]
Titre : Local color and morphological image feature based vegetation identification and its application to human environment street view vegetation mapping, or how green is our county? Type de document : Article/Communication Auteurs : Istvan G. Lauko, Auteur ; Adam Honts, Auteur ; Jacob Beihoff, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 222 - 236 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] carte de la végétation
[Termes IGN] cartographie urbaine
[Termes IGN] couleur (variable spectrale)
[Termes IGN] densité de la végétation
[Termes IGN] extraction de la végétation
[Termes IGN] gestion urbaine
[Termes IGN] image panoramique
[Termes IGN] image Streetview
[Termes IGN] indicateur environnemental
[Termes IGN] indice de végétation
[Termes IGN] Milwaukee
[Termes IGN] paysage urbain
[Termes IGN] rayonnement proche infrarougeRésumé : (auteur) Measuring the amount of vegetation in a given area on a large scale has long been accomplished using satellite and aerial imaging systems. These methods have been very reliable in measuring vegetation coverage accurately at the top of the canopy, but their capabilities are limited when it comes to identifying green vegetation located beneath the canopy cover. Measuring the amount of urban and suburban vegetation along a street network that is partially beneath the canopy has recently been introduced with the use of Google Street View (GSV) images, made accessible by the Google Street View Image API. Analyzing green vegetation through the use of GSV images can provide a comprehensive representation of the amount of green vegetation found within geographical regions of higher population density, and it facilitates an analysis performed at the street-level. In this paper we propose a fine-tuned color based image filtering and segmentation technique and we use it to define and map an urban green environment index. We deployed this image processing method and, using GSV images as a high-resolution GIS data source, we computed and mapped the green index of Milwaukee County, a 3,082 km2 urban/suburban county in Wisconsin. This approach generates a high-resolution street-level vegetation estimate that may prove valuable in urban planning and management, as well as for researchers investigating the correlation between environmental factors and human health outcomes. Numéro de notice : A2020-563 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10095020.2020.1805367 Date de publication en ligne : 24/08/2020 En ligne : https://doi.org/10.1080/10095020.2020.1805367 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95880
in Geo-spatial Information Science > vol 23 n° 3 (September 2020) . - pp 222 - 236[article]Estimation of soil surface water contents for intertidal mudflats using a near-infrared long-range terrestrial laser scanner / Kai Tan in ISPRS Journal of photogrammetry and remote sensing, vol 159 (January 2020)PermalinkEvaluating metrics derived from Landsat 8 OLI imagery to map crop cover / Rei Sonobe in Geocarto international, vol 34 n° 8 ([15/06/2019])PermalinkApplication of Landsat-8 and ASTER satellite remote sensing data for porphyry copper exploration: a case study from Shahr-e-Babak, Kerman, south of Iran / Morteza Safari in Geocarto international, vol 33 n° 11 (November 2018)PermalinkVisible + Near Infrared spectroscopy as taxonomic tool for identifying birch species / Mulualem Tigabu in Silva fennica, vol 52 n° 4 (September 2018)PermalinkDeveloping detailed age-specific thematic maps for coffee (Coffea arabica L.) in heterogeneous agricultural landscapes using random forests applied on Landsat 8 multispectral sensor / Abel Chemura in Geocarto international, vol 32 n° 7 (July 2017)PermalinkWREP : A wavelet-based technique for extracting the red edge position from reflectance spectra for estimating leaf and canopy chlorophyll contents of cereal crops / Dong Li in ISPRS Journal of photogrammetry and remote sensing, vol 129 (July 2017)PermalinkTélédétection pour l'observation des surfaces continentales, Volume 3. Observation des surfaces continentales par télédétection 1 / Nicolas Baghdadi (2017)PermalinkMultisensor and multispectral Lidar characterization and classification of a forest environment / Christopher Hopkinson in Canadian journal of remote sensing, vol 42 n° 5 ([01/05/2016])PermalinkCombining leaf physiology, hyperspectral imaging and partial least squares-regression (PLS-R) for grapevine water status assessment / Tal Rapaport in ISPRS Journal of photogrammetry and remote sensing, vol 109 (November 2015)PermalinkSpectroscopic analysis of green, desiccated and dead tamarisk canopies / Ran Meng in Photogrammetric Engineering & Remote Sensing, PERS, vol 81 n° 3 (March 2015)Permalink