Descripteur
Termes IGN > sciences naturelles > sciences de la vie > biologie > botanique > botanique systématique > Tracheophyta > Spermatophytina > Gymnosperme > Pinophyta > Pinaceae > Pinus (genre) > Pinus ponderosa
Pinus ponderosaSynonyme(s)pin ponderosa ;pin jaune pin à bois lourd |
Documents disponibles dans cette catégorie (6)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Climatic sensitivities derived from tree rings improve predictions of the forest vegetation simulator growth and yield model / Courtney L. Giebink in Forest ecology and management, vol 517 (August-1 2022)
[article]
Titre : Climatic sensitivities derived from tree rings improve predictions of the forest vegetation simulator growth and yield model Type de document : Article/Communication Auteurs : Courtney L. Giebink, Auteur ; R. Justin DeRose, Auteur ; Mark Castle, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 120256 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] cerne
[Termes IGN] croissance des arbres
[Termes IGN] gestion forestière
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] modèle de croissance végétale
[Termes IGN] modèle de simulation
[Termes IGN] Picea (genre)
[Termes IGN] Pinus ponderosa
[Termes IGN] Pseudotsuga menziesii
[Termes IGN] puits de carbone
[Termes IGN] rendement
[Termes IGN] Utah (Etas-Unis)
[Termes IGN] variation saisonnière
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) Forest management has the potential to contribute to the removal of greenhouse gasses from the atmosphere via carbon sequestration and storage. To identify management actions that will maximize carbon removal and storage over the long term, models are needed that accurately and realistically represent forest responses to changing climate. The most widely used growth and yield model in the United States (U.S.), the Forest Vegetation Simulator (FVS), which also forms the basis for several forest carbon calculators, does not currently include the direct effect of climate variation on tree growth. We incorporated the effects of climate on tree diameter growth by combining tree-ring data with forest inventory data to parameterize a suite of alternative models characterizing the growth of three dominant tree species in the arid and moisture-limited state of Utah. These species, Pinus ponderosa Dougl. ex Laws, Pseudotsuga menziesii var. glauca Mayr (Franco), and Picea engelmannii Parry ex Engelm., encompass the full elevational range of montane forest types. The alternative models we considered differed progressively from the current FVS large-tree diameter growth model, first by changing to an annual time step, then by adding interannual climate effects, followed by model simplification (removal of predictors), and finally, complexification, including effects of spatial variation in climate and two-way interactions between predictors. We validated diameter growth predictions from these models with independent observations, and evaluated model performance in terms of accuracy, precision, and bias. We then compared predictions of future growth made by the existing large-tree diameter growth model used in FVS, i.e., without climate effects, to those of our updated models, including those with climate effects. We found that simpler models of tree growth outperform the current FVS model, and that the incorporation of climate effects improves model performance for two out of three species, in which growth is currently overpredicted by FVS. Diameter growth projected with improved, climate-sensitive models is less than the future tree growth projected by the current climate-insensitive FVS model. Tree rings can be used to identify and incorporate drivers of growth variation into a stand-level growth and yield model, giving more accurate predictions of the carbon uptake potential of forests under climate change. Numéro de notice : A2022-390 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1016/j.foreco.2022.120256 Date de publication en ligne : 12/05/2022 En ligne : https://doi.org/10.1016/j.foreco.2022.120256 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100681
in Forest ecology and management > vol 517 (August-1 2022) . - n° 120256[article]Examining the integration of Landsat operational land imager with Sentinel-1 and vegetation indices in mapping southern yellow pines (Loblolly, Shortleaf, and Virginia pines) / Clement E. Akumu in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 1 (January 2022)
[article]
Titre : Examining the integration of Landsat operational land imager with Sentinel-1 and vegetation indices in mapping southern yellow pines (Loblolly, Shortleaf, and Virginia pines) Type de document : Article/Communication Auteurs : Clement E. Akumu, Auteur ; Eze O. Amadi, Auteur Année de publication : 2022 Article en page(s) : pp 29 - 38 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] bande C
[Termes IGN] canopée
[Termes IGN] carte de la végétation
[Termes IGN] coefficient de rétrodiffusion
[Termes IGN] image Landsat-OLI
[Termes IGN] image Sentinel-SAR
[Termes IGN] indice de végétation
[Termes IGN] intégration de données
[Termes IGN] inventaire forestier local
[Termes IGN] Pinus (genre)
[Termes IGN] Pinus ponderosa
[Termes IGN] précision de la classification
[Termes IGN] Soil Adjusted Vegetation IndexRésumé : (Auteur) The mapping of southern yellow pines (loblolly, shortleaf, and Virginia pines) is important to supporting forest inventory and the management of forest resources. The overall aim of this study was to examine the integration of Landsat Operational Land Imager (OLI ) optical data with Sentinel-1 microwave C-band satellite data and vegetation indices in mapping the canopy cover of southern yellow pines. Specifically, this study assessed the overall mapping accuracies of the canopy cover classification of southern yellow pines derived using four data-integration scenarios: Landsat OLI alone; Landsat OLI and Sentinel-1; Landsat OLI with vegetation indices derived from satellite data—normalized difference vegetation index, soil-adjusted vegetation index, modified soil-adjusted vegetation index, transformed soil-adjusted vegetation index, and infrared percentage vegetation index; and 4) Landsat OLI with Sentinel-1 and vegetation indices. The results showed that the integration of Landsat OLI reflectance bands with Sentinel-1 backscattering coefficients and vegetation indices yielded the best overall classification accuracy, about 77%, and standalone Landsat OLI the weakest accuracy, approximately 67%. The findings in this study demonstrate that the addition of backscattering coefficients from Sentinel-1 and vegetation indices positively contributed to the mapping of southern yellow pines. Numéro de notice : A2022-062 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.21-00024R2 Date de publication en ligne : 01/01/2022 En ligne : https://doi.org/10.14358/PERS.21-00024R2 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99706
in Photogrammetric Engineering & Remote Sensing, PERS > vol 88 n° 1 (January 2022) . - pp 29 - 38[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2022011 SL Revue Centre de documentation Revues en salle Disponible A posteriori bias correction of three models used for environmental reporting / Bogdan M. Strimbu in Forestry, an international journal of forest research, vol 91 n° 1 (January 2018)
[article]
Titre : A posteriori bias correction of three models used for environmental reporting Type de document : Article/Communication Auteurs : Bogdan M. Strimbu, Auteur ; Alexandru Amarioarei, Auteur ; John Paul McTague, Auteur ; Mihaela M. Paun, Auteur Année de publication : 2018 Article en page(s) : pp 49 - 62 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Statistiques
[Termes IGN] correction
[Termes IGN] erreur systématique
[Termes IGN] Louisiane (Etats-Unis)
[Termes IGN] modèle mathématique
[Termes IGN] Oregon (Etats-Unis)
[Termes IGN] Pinus ponderosa
[Termes IGN] Pseudotsuga menziesii
[Termes IGN] résidu
[Termes IGN] Roumanie
[Termes IGN] Texas (Etats-Unis)Résumé : (Auteur) A plethora of forest models were developed by transforming the dependent variable, which introduces bias if appropriate corrections are not applied when back-transformed. Many recognized models are still biased and the original data sets are no longer available, which suggests ad hoc bias corrections. The present research presents a procedure for bias correction in the absence of needed information from summary statistics. Additionally, we developed a realistic correction of the square root transformation based on a truncated normal distribution. The transformations considered in this study are the logarithm, the square root and arcsine square root. Using simulated data we found that uncorrected back-transformation created biases by as much as 100 percent. The generated data revealed that depending on available information, that bias can still be present after correction. In addition to generated data we corrected the site index of Douglas-fir and ponderosa pine in Oregon USA, tree volume of 27 species from Romania, stand merchantable volume for longleaf pine in Louisiana and East Texas USA, and canopy fuel weight in Washington USA. Using only the available information, the unbiased back-transformed estimates can change from ≤1 percent (i.e. the site index and canopy fuel weight) to ≥⅓ (tree and stand volume). Numéro de notice : A2018-631 Affiliation des auteurs : non IGN Thématique : FORET/MATHEMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1093/forestry/cpx032 Date de publication en ligne : 10/08/2017 En ligne : https://doi.org/10.1093/forestry/cpx032 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93217
in Forestry, an international journal of forest research > vol 91 n° 1 (January 2018) . - pp 49 - 62[article]Assessment of Quickbird high spatial resolution imagery to detect red attack damage due to mountain pine beetle infestation / Nicholas C. Coops in Remote sensing of environment, vol 103 n° 1 (15 July 2006)
[article]
Titre : Assessment of Quickbird high spatial resolution imagery to detect red attack damage due to mountain pine beetle infestation Type de document : Article/Communication Auteurs : Nicholas C. Coops, Auteur ; M. Johnson, Auteur ; Michael A. Wulder, Auteur ; Joanne C. White, Auteur Année de publication : 2006 Article en page(s) : pp 67 - 80 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Colombie-Britannique (Canada)
[Termes IGN] dommage matériel
[Termes IGN] image à très haute résolution
[Termes IGN] image Quickbird
[Termes IGN] indice de végétation
[Termes IGN] Insecta
[Termes IGN] Pinus ponderosa
[Termes IGN] surveillance forestièreRésumé : (Auteur) High spatial resolution remotely sensed data has the potential to complement existing forest health programs for both strategic planning over large areas, as well as for detailed and precise identification of tree crowns subject to stress and infestation. The area impacted by the current mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreak in British Columbia, Canada, has increased 40-fold over the previous 5 years, with approximately 8.5 million ha of forest infested in 2005. As a result of the spatial extent and intensity of the outbreak, new technologies are being assessed to help detect, map, and monitor the damage caused by the beetle, and to inform mitigation of future beetle outbreaks. In this paper, we evaluate the capacity of high spatial resolution QuickBird multi-spectral imagery to detect mountain pine beetle red attack damage. ANOVA testing of individual spectral bands, as well as the Normalized Difference Vegetation Index (NDVI) and a ratio of red to green reflectance (Red–Green Index or RGI), indicated that the RGI was the most successful (p Numéro de notice : A2006-284 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.rse.2006.03.012 En ligne : https://doi.org/10.1016/j.rse.2006.03.012 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=28011
in Remote sensing of environment > vol 103 n° 1 (15 July 2006) . - pp 67 - 80[article]Integrating high resolution remote sensing, GIS and fuzzy set theory for identifying susceptibility areas of forest insect infestations / C. Bone in International Journal of Remote Sensing IJRS, vol 26 n° 21 (November 2005)
[article]
Titre : Integrating high resolution remote sensing, GIS and fuzzy set theory for identifying susceptibility areas of forest insect infestations Type de document : Article/Communication Auteurs : C. Bone, Auteur ; Suzana Dragićević, Auteur ; A. Roberts, Auteur Année de publication : 2005 Article en page(s) : pp 4809 - 4828 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] carte de la végétation
[Termes IGN] classification floue
[Termes IGN] Colombie-Britannique (Canada)
[Termes IGN] forêt
[Termes IGN] incertitude des données
[Termes IGN] Insecta
[Termes IGN] modèle cartographique
[Termes IGN] Pinus ponderosa
[Termes IGN] sous ensemble flou
[Termes IGN] système expertRésumé : (Auteur) The use of fuzzy set theory has become common in remote sensing and geographical information system (GIS) applications to deal with issues surrounding the uncertainty of geospatial datasets. The objective of this study is to develop a model that integrates the concept of fuzzy set theory with remote sensing and GIS in order to produce susceptibility maps of insect infestations in forest landscapes. Fuzzy set theory was applied to information extracted from multiple-year high resolution remote sensing data and integrated in a rasterbased GIS to create a map indicating the spatial variation of insect susceptibility in a landscape. Variable-specific fuzzy membership functions were developed based on expert knowledge and existing data, and integrated through a semantic import model. The results from a case study on mountain pine beetle (Dendroctonus ponderosae Hopkins) illustrate that the model provides a method to successfully estimate areas of varying susceptibility to insect infestation from high resolution remote sensing images. It was concluded that fuzzy sets are an adequate method for dealing with uncertainty in defining susceptibility variables. The susceptibility maps can be utilized for guiding management decisions based on the spatial aspects of insect-host relationships. Numéro de notice : A2005-468 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/01431160500239180 En ligne : https://doi.org/10.1080/01431160500239180 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=27604
in International Journal of Remote Sensing IJRS > vol 26 n° 21 (November 2005) . - pp 4809 - 4828[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 080-05211 RAB Revue Centre de documentation En réserve L003 Disponible Using Lidar and effective LAI data to evaluate Ikonos and Landsat 7 ETM+ vegetation cover estimates in a ponderosa pine forest / X. Chen in Remote sensing of environment, vol 91 n° 1 (15/05/2004)Permalink