Détail de l'auteur
Auteur Andrew K. Skidmore |
Documents disponibles écrits par cet auteur (29)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Titre : Remotely sensing the species of individual trees Type de document : Thèse/HDR Auteurs : Yifang Shi, Auteur ; Andrew K. Skidmore, Directeur de thèse ; Tiejun Wang, Directeur de thèse Editeur : Enschede [Pays Bas] : University of Twente Année de publication : 2020 Collection : ITC Dissertation num. 376 Importance : 163 p. Format : 21 x 30 cm Note générale : bibliographie
Doctor of Philosophy, Faculty of Geo-Information Science and Earth Observation, University of TwenteLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] Abies alba
[Termes IGN] analyse comparative
[Termes IGN] analyse diachronique
[Termes IGN] Bavière (Allemagne)
[Termes IGN] chlorophylle
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] forêt tempérée
[Termes IGN] image hyperspectrale
[Termes IGN] image infrarouge couleur
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] Leaf Mass per Area
[Termes IGN] orthoimageRésumé : (auteur) The accurate identification of tree species is critical for the management of forest ecosystems. Mapping of tree species is an important task as it can assist a wide range of environmental applications, such as biodiversity monitoring, ecosystem services assessment, invasive species detection, and sustainable forest management. Compared to the conventional approaches based on labor-intensive field measurements, remote sensing has supplied a large variety of cutting-edge techniques to accomplish forest inventory. However, individual tree species classification in natural mixed forests, as it is typical in central Europe, is still a challenging task. High spectral and structural intra-species variability and inter-species similarity, due to phenological effects, differences in tree age and openness of canopies, shadowing effects, and environment variability, restrict tree species separability. An in-depth understanding of the relationship between species-specific features and remote sensing observations for tree species classification needs further investigation. This thesis aimed to accurately map the species of individual trees using multi-source remotely sensed data, including aerial photographs, airborne LiDAR and hyperspectral data. The research in the thesis firstly evaluated the performance of geometric and radiometric metrics from airborne LiDAR data under leaf-on and leaf-off conditions for individual tree species discrimination. The results empathized the importance of intensity-related LiDAR metrics for tree species identification under both leaf-on and leaf-off conditions. Then, the thesis examined whether multi-temporal digital CIR orthophotos could be used to further increase the accuracy of airborne LiDAR-based individual tree species mapping. The results showed that the texture features generated from multi-temporal digital CIR orthophotos under different view-illumination conditions are species-specific. Combining these texture features with LiDAR metrics significantly improved the accuracy of individual tree species mapping. To explore more valuable species-specific features, the thesis consequently integrated three plant functional traits (i.e. equivalent water thickness, leaf mass per area and leaf chlorophyll) retrieved from hyperspectral data with hyperspectral derived spectral features and airborne LiDAR derived metrics for mapping five tree species. Three selected plant functional traits were accurately retrieved using radiative transfer model and further improved the accuracy of tree species classification. Eventually, the thesis focused on an important tree species silver fir, and accurately mapped individuals of this species based on one-class classifiers using integrated airborne hyperspectral and LiDAR data. The mapping results provided the references locating the areas with a high occurrence probability of silver fir trees and hence increase the efficiency in subsequent field campaigns for forest management and biodiversity monitoring. This thesis explored the potential of various remotely sensed datasets for individual tree species mapping. The methodologies and findings in this thesis can be applied in the mapping of other tree species, which enriches the knowledge of species-specific characteristics and related remotely sensed signatures. The emerging of UAVs and the upcoming hyperspectral missions such as EnMAP and HySPIRI deliver valuable datasets with multi-scale coverage and revisit observations, which can be used for mapping the diversity of tree species at stand or regional level. Note de contenu : - General introduction
- Important LiDAR metrics for discriminating tree species
- Improving LiDAR-based tree species mapping using multi-temporal CIR orthophotos
- Tree species classification using remotely sensed plant functional traits
- Mapping individual silver fir trees in a Norway spruce dominated forest
- Synthesis: Mapping individual tree species using multi-source remotely sensed dataNuméro de notice : 17671 Affiliation des auteurs : non IGN Thématique : FORET Nature : Thèse étrangère Note de thèse : PhD thesis : : University of Twente : 2020 DOI : 10.3990/1.978903654953-0 Date de publication en ligne : 31/01/2020 En ligne : https://doi.org/10.3990/1.978903654953-0 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97985 Accurate modelling of canopy traits from seasonal Sentinel-2 imagery based on the vertical distribution of leaf traits / Tawanda W. Gara in ISPRS Journal of photogrammetry and remote sensing, vol 157 (November 2019)
[article]
Titre : Accurate modelling of canopy traits from seasonal Sentinel-2 imagery based on the vertical distribution of leaf traits Type de document : Article/Communication Auteurs : Tawanda W. Gara, Auteur ; Roshanak Darvishzadeh, Auteur ; Andrew K. Skidmore, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 108 - 123 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Bavière (Allemagne)
[Termes IGN] canopée
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] écosystème forestier
[Termes IGN] hétérogénéité spatiale
[Termes IGN] image Sentinel-MSI
[Termes IGN] indice foliaire
[Termes IGN] Leaf Mass per Area
[Termes IGN] photosynthèse
[Termes IGN] variation saisonnièreRésumé : (Auteur) Leaf traits at canopy level (hereinafter canopy traits) are conventionally expressed as a product of total canopy leaf area index (LAI) and leaf trait content based on samples collected from the exposed upper canopy. This traditional expression is centered on the theory that absorption of incident photosynthetically active radiation (PAR) follow a bell-shaped function skewed to the upper canopy. However, the validity of this theory has remained untested for a suite of canopy traits in a temperate forest ecosystem across multiple seasons using multispectral imagery. In this study, we examined the effect of canopy traits expression in modelling canopy traits using Sentinel-2 multispectral data across the growing season in Bavaria Forest National Park (BFNP), Germany. To achieve this, we measured leaf mass per area (LMA), chlorophyll (Cab), nitrogen (N) and carbon content and LAI from the exposed upper and shaded lower canopy respectively over three seasons (spring, summer and autumn). Subsequently, we estimated canopy traits using two expressions, i.e. the traditional expression-based on the product of LAI and leaf traits content of samples collected from the sunlit upper canopy (hereinafter top-of-canopy expression) and the weighted expression - established on the proportion between the shaded lower and sunlit upper canopy LAI and their respective leaf traits content. Using a Random Forest machine-learning algorithm, we separately modelled canopy traits estimated from the two expressions using Sentinel-2 spectral bands and vegetation indices. Our results showed that dry matter related canopy traits (LMA, N and carbon) estimated based on the weighted canopy expression yield stronger correlations and higher prediction accuracy (NRMSECV 0.48 µg/cm2) across all seasons. We also developed a generalized model that explained 52.57–67.82% variation in canopy traits across the three seasons. Using the most accurate Random Forest model for each season, we demonstrated the capability of Sentinel-2 data to map seasonal dynamics of canopy traits across the park. Results presented in this study revealed that canopy trait expression can have a profound effect on modelling the accuracy of canopy traits using satellite imagery throughout the growing seasons. These findings have implications on model accuracy when monitoring the dynamics of ecosystem functions, processes and services. Numéro de notice : A2019-493 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.09.005 Date de publication en ligne : 11/09/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.09.005 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93725
in ISPRS Journal of photogrammetry and remote sensing > vol 157 (November 2019) . - pp 108 - 123[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019111 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019113 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019112 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Mapping leaf chlorophyll content from Sentinel-2 and RapidEye data in spruce stands using the invertible forest reflectance model / Roshanak Darvishzadeh in International journal of applied Earth observation and geoinformation, vol 79 (July 2019)
[article]
Titre : Mapping leaf chlorophyll content from Sentinel-2 and RapidEye data in spruce stands using the invertible forest reflectance model Type de document : Article/Communication Auteurs : Roshanak Darvishzadeh, Auteur ; Andrew K. Skidmore, Auteur ; Haidi Abdullah, Auteur ; Elias Cherenet, Auteur Année de publication : 2019 Article en page(s) : pp 58-70 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse multibande
[Termes IGN] bande rouge
[Termes IGN] bande spectrale
[Termes IGN] Bavière (Allemagne)
[Termes IGN] canopée
[Termes IGN] carte de la végétation
[Termes IGN] image RapidEye
[Termes IGN] image Sentinel-MSI
[Termes IGN] modèle d'inversion
[Termes IGN] Picea abies
[Termes IGN] réflectance végétale
[Termes IGN] spectrophotométrie
[Termes IGN] teneur en chlorophylle des feuillesRésumé : (auteur) Leaf chlorophyll plays an essential role in controlling photosynthesis, physiological activities and forest health. In this study, the performance of Sentinel-2 and RapidEye satellite data and the Invertible Forest Reflectance Model (INFORM) radiative transfer model (RTM) for retrieving and mapping of leaf chlorophyll content in the Norway spruce (Picea abies) stands of a temperate forest was evaluated. Biochemical properties of leaf samples as well as stand structural characteristics were collected in two subsequent field campaigns during July 2015 and 2016 in the Bavarian Forest National Park (BFNP), Germany, parallel with the timing of the RapidEye and Sentinel-2 images. Leaf chlorophyll was measured both destructively and nondestructively using wet chemical spectrophotometry analysis and a hand-held chlorophyll content meter. The INFORM was utilised in the forward mode to generate two lookup tables (LUTs) in the spectral band settings of RapidEye and Sentinel-2 data using information obtained from the field campaigns. Before generating the LUTs, the sensitivity of the model input parameters to the spectral data from RapidEye and Sentinel-2 were examined. The canopy reflectance of the studied plots were obtained from the satellite images and used as input for the inversion of LUTs. The coefficient of determination (R2), root mean square errors (RMSE), and the normalised root mean square errors (NRMSE), between the retrieved and measured leaf chlorophyll, were then used to examine the attained results from RapidEye and Sentinel-2 data, respectively. The use of multiple solutions and spectral subsets for the inversion process were further investigated to enhance the retrieval accuracy of foliar chlorophyll. The result of the sensitivity analysis demonstrated that the simulated canopy reflectance of Sentinel-2 is sensitive to the alternation of all INFORM input parameters, while the simulated canopy reflectance from RapidEye did not show sensitivity to leaf water content variations. In general, there was agreement between the simulated and measured reflectance spectra from RapidEye and Sentinel-2, particularly in the visible and red-edge regions. However, examining the average absolute error from the simulated and measured reflectance revealed a large discrepancy in spectral bands around the near-infrared shoulder. The relationship between retrieved and measured leaf chlorophyll content from the Sentinel-2 data had a higher coefficient of determination with a higher NRMSE (NRMSE = 0.36 μg/cm2, R2 = 0.45) compared to those obtained using the RapidEye data (NRMSE = 0.31 μg/cm2 and R2 = 0.39). Using the mean of the ten best solutions (retrieved chlorophyll) the retrieval error for both Sentinel-2 and RapidEye data decreased (NRMSE = 0.34, NRMSE = 0.26, respectively), as compared to only selecting the single best solution. When the Sentinel-2 red edge bands were used as the spectral subset, the retrieval error of leaf chlorophyll decreased indicating the importance of red edge, as well as properly located spectral bands, for leaf chlorophyll estimation. The chlorophyll maps produced by the inversion of the two LUTs effectively represented the variation of foliar chlorophyll in BFNP and confirmed our earlier findings on the observed stress pattern caused by insect infestation. Our findings emphasise the importance of multispectral satellites which benefits from red edge spectral bands such as Sentinel-2 as well as RapidEye for regional mapping of vegetation foliar properties, particularly, chlorophyll using RTMs such as INFORM. Numéro de notice : A2019-460 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.jag.2019.03.003 Date de publication en ligne : 08/03/2019 En ligne : https://doi.org/10.1016/j.jag.2019.03.003 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93577
in International journal of applied Earth observation and geoinformation > vol 79 (July 2019) . - pp 58-70[article]Variation of leaf angle distribution quantified by terrestrial LiDAR in natural European beech forest / Jing Liu in ISPRS Journal of photogrammetry and remote sensing, vol 148 (February 2019)
[article]
Titre : Variation of leaf angle distribution quantified by terrestrial LiDAR in natural European beech forest Type de document : Article/Communication Auteurs : Jing Liu, Auteur ; Andrew K. Skidmore, Auteur ; Tiejun Wang, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 208 - 220 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] angle (géométrie)
[Termes IGN] Bavière (Allemagne)
[Termes IGN] croissance végétale
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Fagus sylvatica
[Termes IGN] feuille (végétation)
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] semis de pointsMots-clés libres : inclinaison longitudinale Leaf inclination angle leaf angle distribution Résumé : (Auteur) Leaf inclination angle and leaf angle distribution (LAD) are important plant structural traits, influencing the flux of radiation, carbon and water. Although leaf angle distribution may vary spatially and temporally, its variation is often neglected in ecological models, due to difficulty in quantification. In this study, terrestrial LiDAR (TLS) was used to quantify the LAD variation in natural European beech (Fagus Sylvatica) forests. After extracting leaf points and reconstructing leaf surface, leaf inclination angle was calculated automatically. The mapping accuracy when discriminating between leaves and woody material was very high across all beech stands (overall accuracy = 87.59%). The calculation accuracy of leaf angles was evaluated using simulated point cloud and proved accurate generally (R2 = 0.88, p Numéro de notice : A2019-075 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.01.005 Date de publication en ligne : 15/01/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.01.005 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92162
in ISPRS Journal of photogrammetry and remote sensing > vol 148 (February 2019) . - pp 208 - 220[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019021 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019023 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019022 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Adaptive stopping criterion for top-down segmentation of ALS point clouds in temperate coniferous forests / Nina Amiri in ISPRS Journal of photogrammetry and remote sensing, vol 141 (July 2018)
[article]
Titre : Adaptive stopping criterion for top-down segmentation of ALS point clouds in temperate coniferous forests Type de document : Article/Communication Auteurs : Nina Amiri, Auteur ; Przemyslaw Polewski, Auteur ; Marco Heurich, Auteur ; Peter Krzystek, Auteur ; Andrew K. Skidmore, Auteur Année de publication : 2018 Article en page(s) : pp 265 - 274 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] Bavière (Allemagne)
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] inventaire forestier local
[Termes IGN] lasergrammétrie
[Termes IGN] Pinophyta
[Termes IGN] segmentation
[Termes IGN] semis de points
[Vedettes matières IGN] Inventaire forestierMots-clés libres : Bavarian Forest National Park Résumé : (auteur) The development of new approaches to individual tree crown delineation for forest inventory and management is an important area of ongoing research. The increasing availability of high density ALS (Airborne Laser Scanning) point clouds offers the opportunity to segment the individual tree crowns and deduce their geometric properties with a high level of accuracy. Top-down segmentation methods such as normalized cut are established approaches for delineation of single trees in ALS point clouds. However, overlapping crowns and branches of nearby trees frequently cause over- and under-segmentation due to the difficulty of defining a single criterion for stopping the partitioning process. In this work, we investigate an adaptive stopping criterion based on the visual appearance of trees within the point clouds. We focus on coniferous trees due to their well-defined crown shapes in comparison to deciduous trees. This approach is based on modeling the coniferous tree crowns with elliptic paraboloids to infer whether a given 3D scene contains exactly one or more than one tree. For each processed scene, candidate tree peaks are generated from local maxima found within the point cloud. Next, paraboloids are fitted at the peaks using a random sample consensus procedure and classified based on their geometric properties. The decision to stop or continue partitioning is determined by finding a set of non-overlapping paraboloids. Experiments were performed on three plots from the Bavarian Forest National Park in Germany. Based on validation data from the field inventory, results show that our approach improves the segmentation quality by up to 10% across plots with different properties, such as average tree height and density. This indicates that the new adaptive stopping criterion for normalized cut segmentation is capable of delineating tree crowns more accurately than a static stopping criterion based on a constant Ncut threshold value. Numéro de notice : A2018-670 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.05.006 Date de publication en ligne : 29/05/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.05.006 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90405
in ISPRS Journal of photogrammetry and remote sensing > vol 141 (July 2018) . - pp 265 - 274[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018071 RAB Revue Centre de documentation En réserve L003 Disponible 081-2018073 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2018072 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt Connecting infrared spectra with plant traits to identify species / Maria F. Buitrago in ISPRS Journal of photogrammetry and remote sensing, vol 139 (May 2018)PermalinkImportant LiDAR metrics for discriminating forest tree species in Central Europe / Yifang Shi in ISPRS Journal of photogrammetry and remote sensing, vol 137 (March 2018)PermalinkLarge off-nadir scan angle of airborne LiDAR can severely affect the estimates of forest structure metrics / Jing Liu in ISPRS Journal of photogrammetry and remote sensing, vol 136 (February 2018)PermalinkThe Naïve Overfitting Index Selection (NOIS): A new method to optimize model complexity for hyperspectral data / Alby D. Rocha in ISPRS Journal of photogrammetry and remote sensing, vol 133 (November 2017)PermalinkSignificant effect of topographic normalization of airborne LiDAR data on the retrieval of plant area index profile in mountainous forests / Jing Liu in ISPRS Journal of photogrammetry and remote sensing, vol 132 (October 2017)PermalinkRetrieval of leaf area index in different plant species using thermal hyperspectral data / Elnaz Neinavaz in ISPRS Journal of photogrammetry and remote sensing, vol 119 (September 2016)PermalinkChanges in thermal infrared spectra of plants caused by temperature and water stress / Maria F. Buitrago in ISPRS Journal of photogrammetry and remote sensing, vol 111 (January 2016)PermalinkGenerating pit-free canopy height models from airborne lidar / Anahita Khosravipour in Photogrammetric Engineering & Remote Sensing, PERS, vol 80 n° 9 (September 2014)PermalinkNon-linear partial least square regression increases the estimation accuracy of grass nitrogen and phosphorus using in situ hyperspectral and environmental data / Abel Ramoelo in ISPRS Journal of photogrammetry and remote sensing, vol 82 (August 2013)Permalinkvol 26 n° 11-12 - november - december 2012 - Second special issue on spatial ecology [Suivi de] Reflections on geographic information science : special issue in honor of Michael Goodchild (Bulletin de International journal of geographical information science IJGIS) / Laffan ShawnPermalink