Descripteur
Termes IGN > sciences naturelles > physique > optique > optique physique > radiométrie > rayonnement électromagnétique > réponse spectrale
réponse spectraleVoir aussi |
Documents disponibles dans cette catégorie (52)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Retrieving grassland canopy water content by considering the information from neighboring pixels / Binbin He in Photogrammetric Engineering & Remote Sensing, PERS, vol 83 n° 8 (August 2017)
[article]
Titre : Retrieving grassland canopy water content by considering the information from neighboring pixels Type de document : Article/Communication Auteurs : Binbin He, Auteur ; Xingwen Quan, Auteur ; Dasong Xu, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 553 - 565 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Chine
[Termes IGN] classification barycentrique
[Termes IGN] classification pixellaire
[Termes IGN] modèle de transfert radiatif
[Termes IGN] prairie
[Termes IGN] réponse spectrale
[Termes IGN] teneur en eau liquideRésumé : (auteur) Accurate and robust retrieval of grassland canopy water content (CWC) using a radiative transfer model (RTM) is generally affected by the ill-posed inversion problem due to the lack of enough available a priori information. To alleviate this problem when inversing the RTM, a two-step inversion method was proposed. The key point of this method was to simultaneously consider the spectral information from neighboring pixels and the spatial dependency among these pixels, with the purpose to win more information from these neighboring pixels. The proposed methodology was then applied to retrieve CWC using the PROSAIL RTM from Landsat-8 OLI data for a plateau grassland in China. The results showed that the estimated CWC using the proposed method (RMSE = 67.31 g m-2 and R2 = 0.81) was better than that from the traditional method (RMSE = 80.11 g m-2 and R2 = 0.78) which only considered the information of single pixel. Numéro de notice : A2017-436 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.83.8.553 En ligne : https://doi.org/10.14358/PERS.83.8.553 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86340
in Photogrammetric Engineering & Remote Sensing, PERS > vol 83 n° 8 (August 2017) . - pp 553 - 565[article]Exploiting joint sparsity for pansharpening : the J-SparseFI algorithm / Xiao Xiang Zhu in IEEE Transactions on geoscience and remote sensing, vol 54 n° 5 (May 2016)
[article]
Titre : Exploiting joint sparsity for pansharpening : the J-SparseFI algorithm Type de document : Article/Communication Auteurs : Xiao Xiang Zhu, Auteur ; Claas Grohnfeldt, Auteur ; Richard Bamler, Auteur Année de publication : 2016 Article en page(s) : pp 2664 - 2681 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme de fusion
[Termes IGN] données clairsemées
[Termes IGN] fusion d'images
[Termes IGN] image multibande
[Termes IGN] image panchromatique
[Termes IGN] image Worldview
[Termes IGN] reconstruction d'image
[Termes IGN] régularisation de Tychonoff
[Termes IGN] réponse spectraleRésumé : (Auteur) Recently, sparse signal representation of image patches has been explored to solve the pansharpening problem. Although these proposed sparse-reconstruction-based methods lead to promising results, three issues remained unsolved: 1) high computational cost; 2) no consideration given to the possibility of mutually correlated information in different multispectral channels; and 3) requirement that the spectral responses of the panchromatic (Pan) image and the multispectral image cover the same wavelength range, which is not necessarily valid for most sensors. In this paper, we propose a sophisticated sparse image fusion algorithm, which is named “jointly sparse fusion of images” (J-SparseFI). It is based on the earlier proposed sparse fusion of images (SparseFI) algorithm and overcomes the aforementioned three drawbacks of the existing sparse image fusion algorithms. The computational problem is handled by reducing the problem size and by proposing a fully parallelizable scheme. Moreover, J-SparseFI exploits the possible signal structure correlations between multispectral channels by introducing the joint sparsity model (JSM) and sharpening the highly correlated adjacent multispectral channels together. This is done by exploiting the distributed compressive sensing theory that restricts the solution of an underdetermined system by considering an ensemble of signals being jointly sparse. J-SparseFI also offers a practical solution to overcome spectral range mismatch between the Pan and multispectral images. By means of sensor spectral response and channel mutual correlation analysis, the multispectral channels are assigned to primary groups of joint channels, secondary groups of joint channels, and individual channels. Primary groups of joint channels, individual channels, and secondary groups of joint channels are then reconstructed sequentially, by the JSM or by modified SparseFI, using a dictionary trained from the Pan image or previously reconstructed high-resolution multispectral channels. A recipe of how to choose appropriate algorithm parameters, including the most crucial regularization parameter, is provided. The algorithm is evaluated and validated using WorldView-2-like images that are simulated using very high resolution airborne HySpex hyperspectral imagery and further practically demonstrated using real WorldView-2 images. The algorithm's performance is compared with other state-of-the-art methods. Visual and quantitative analyses demonstrate the high quality of the proposed method. In particular, the analysis of the difference images suggests that J-SparseFI is superior in image resolution recovery. Numéro de notice : A2016-844 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2015.2504261 En ligne : http://dx.doi.org/10.1109/TGRS.2015.2504261 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=82890
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 5 (May 2016) . - pp 2664 - 2681[article]Deriving leaf mass per area (LMA) from foliar reflectance across a variety of plant species using continuous wavelet analysis / Tao Cheng in ISPRS Journal of photogrammetry and remote sensing, vol 87 (January 2014)
[article]
Titre : Deriving leaf mass per area (LMA) from foliar reflectance across a variety of plant species using continuous wavelet analysis Type de document : Article/Communication Auteurs : Tao Cheng, Auteur ; Benoit Rivard, Auteur ; Arturo G. Sanchez-Azofeifa, Auteur ; et al., Auteur Année de publication : 2014 Article en page(s) : pp 28 - 38 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] biomasse
[Termes IGN] espèce végétale
[Termes IGN] indice foliaire
[Termes IGN] Leaf Mass per Area
[Termes IGN] modèle physique
[Termes IGN] ondelette
[Termes IGN] réflectance végétale
[Termes IGN] réponse spectrale
[Termes IGN] transformation en ondelettesRésumé : (Auteur) Leaf mass per area (LMA), the ratio of leaf dry mass to leaf area, is a trait of central importance to the understanding of plant light capture and carbon gain. It can be estimated from leaf reflectance spectroscopy in the infrared region, by making use of information about the absorption features of dry matter. This study reports on the application of continuous wavelet analysis (CWA) to the estimation of LMA across a wide range of plant species. We compiled a large database of leaf reflectance spectra acquired within the framework of three independent measurement campaigns (ANGERS, LOPEX and PANAMA) and generated a simulated database using the PROSPECT leaf optical properties model. CWA was applied to the measured and simulated databases to extract wavelet features that correlate with LMA. These features were assessed in terms of predictive capability and robustness while transferring predictive models from the simulated database to the measured database. The assessment was also conducted with two existing spectral indices, namely the Normalized Dry Matter Index (NDMI) and the Normalized Difference index for LMA (NDLMA). Five common wavelet features were determined from the two databases, which showed significant correlations with LMA (R2: 0.51–0.82, p Numéro de notice : A2014-009 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2013.10.009 En ligne : https://doi.org/10.1016/j.isprsjprs.2013.10.009 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32914
in ISPRS Journal of photogrammetry and remote sensing > vol 87 (January 2014) . - pp 28 - 38[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2014011 RAB Revue Centre de documentation En réserve L003 Disponible Progress in marine oil spill optical remote sensing: Detected targets, spectral response characteristics, and theories / Lu yingcheng in Marine geodesy, vol 36 n° 3 (September - November 2013)
[article]
Titre : Progress in marine oil spill optical remote sensing: Detected targets, spectral response characteristics, and theories Type de document : Article/Communication Auteurs : Lu yingcheng, Auteur ; Xiang Li, Auteur ; Qingjiu Tian, Auteur ; et al., Auteur Année de publication : 2013 Article en page(s) : pp 334 - 346 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] détection automatique
[Termes IGN] détection d'objet
[Termes IGN] distribution du coefficient de réflexion bidirectionnelle BRDF
[Termes IGN] marée noire
[Termes IGN] pollution des mers
[Termes IGN] réponse spectrale
[Termes IGN] volume (grandeur)Résumé : (Auteur) Different oil spill pollution types could be produced in oil transport and weathering processes. Investigation of these pollution types is beneficial for oil spill recovery and processing. Optical remote sensing techniques play an important role in marine oil spill monitoring and have the ability to identify different oil spill pollution types. Recently, research on oil spill optical remote sensing has made much progress in detecting targets, identifying spectral response characteristics, and formulating theories. Floating black oil, oil slicks, and oil-water mixture in marine oil spill accidents are the main targets to be investigated by optical remote sensors. The visible spectral response differences of these targets are the base of oil spill optical remote sensing research. Bi-directional reflectance distribution function, light interference, absorption, and scattering of targets produce different spectra. Therefore, oil spill optical remote sensing could be used to identify the main oil spill pollution types and estimate oil spill volume. Numéro de notice : A2013-713 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/01490419.2013.793633 Date de publication en ligne : 14/12/2009 En ligne : https://doi.org/10.1080/01490419.2013.793633 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32849
in Marine geodesy > vol 36 n° 3 (September - November 2013) . - pp 334 - 346[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 230-2013031 RAB Revue Centre de documentation En réserve L003 Disponible Assessment of spectral, misregistration, and spatial uncertainties inherent in the cross-calibration study / Gyanesh Chander in IEEE Transactions on geoscience and remote sensing, vol 51 n° 3 Tome 1 (March 2013)
[article]
Titre : Assessment of spectral, misregistration, and spatial uncertainties inherent in the cross-calibration study Type de document : Article/Communication Auteurs : Gyanesh Chander, Auteur ; Dennis L. Helder, Auteur ; David Aaron, Auteur ; et al., Auteur Année de publication : 2013 Article en page(s) : pp 1282 - 1296 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] bande spectrale
[Termes IGN] étalonnage relatif
[Termes IGN] image EO1-Hyperion
[Termes IGN] image hyperspectrale
[Termes IGN] image Landsat-ETM+
[Termes IGN] image Landsat-TM
[Termes IGN] image Terra-MODIS
[Termes IGN] incertitude de mesurage
[Termes IGN] incertitude géométrique
[Termes IGN] incertitude spectrale
[Termes IGN] Libye
[Termes IGN] pouvoir de résolution géométrique
[Termes IGN] réponse spectraleRésumé : (Auteur) Cross-calibration of satellite sensors permits the quantitative comparison of measurements obtained from different Earth Observing (EO) systems. Cross-calibration studies usually use simultaneous or near-simultaneous observations from several spaceborne sensors to develop band-by-band relationships through regression analysis. The investigation described in this paper focuses on evaluation of the uncertainties inherent in the cross-calibration process, including contributions due to different spectral responses, spectral resolution, spectral filter shift, geometric misregistrations, and spatial resolutions. The hyperspectral data from the Environmental Satellite SCanning Imaging Absorption SpectroMeter for Atmospheric CartograpHY and the EO-1 Hyperion, along with the relative spectral responses (RSRs) from the Landsat 7 Enhanced Thematic Mapper (TM) Plus and the Terra Moderate Resolution Imaging Spectroradiometer sensors, were used for the spectral uncertainty study. The data from Landsat 5 TM over five representative land cover types (desert, rangeland, grassland, deciduous forest, and coniferous forest) were used for the geometric misregistrations and spatial-resolution study. The spectral resolution uncertainty was found to be within 0.25%, spectral filter shift within 2.5%, geometric misregistrations within 0.35%, and spatial-resolution effects within 0.1% for the Libya 4 site. The one-sigma uncertainties presented in this paper are uncorrelated, and therefore, the uncertainties can be summed orthogonally. Furthermore, an overall total uncertainty was developed. In general, the results suggested that the spectral uncertainty is more dominant compared to other uncertainties presented in this paper. Therefore, the effect of the sensor RSR differences needs to be quantified and compensated to avoid large uncertainties in cross-calibration results. Numéro de notice : A2013-124 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2012.2228008 En ligne : https://doi.org/10.1109/TGRS.2012.2228008 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32262
in IEEE Transactions on geoscience and remote sensing > vol 51 n° 3 Tome 1 (March 2013) . - pp 1282 - 1296[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2013031A RAB Revue Centre de documentation En réserve L003 Disponible Spectral response function comparability among 21 satellite sensors for vegetation monitoring / Alemu Gonsamo in IEEE Transactions on geoscience and remote sensing, vol 51 n° 3 Tome 1 (March 2013)PermalinkSemisupervised learning of hyperspectral data with unknown land-cover classes / G. Jun in IEEE Transactions on geoscience and remote sensing, vol 51 n° 1 Tome 1 (January 2013)PermalinkDimensionality reduction of hyperspectral data using spectral fractal feature / K. Mukherjee in Geocarto international, vol 27 n° 6 (October 2012)PermalinkL'image aérienne proche infrarouge : une information essentielle pour l'étude et la cartographie de la végétation / Jean Guy Boureau in Rendez-vous techniques, n° 31 (hiver 2011)PermalinkNoise-signal index threshold: a new noise-reduction technique for generation of reference spectra and efficient hyperspectral image classification / K. Kusuma in Geocarto international, vol 25 n° 7 (November 2010)PermalinkSpectroscopic calibration correlation of field and lab-sized fluorescence LIDAR systems / B. Déry in IEEE Transactions on geoscience and remote sensing, vol 48 n° 9 (September 2010)PermalinkAssessing image processing techniques for geological mapping: a case study in Eljufra, Libya / N.M. Saadi in Geocarto international, vol 24 n° 3 (June - July 2009)PermalinkLandsat-5 TM reflective-band absolute radiometric calibration / Gyanesh Chander in IEEE Transactions on geoscience and remote sensing, vol 42 n° 12 (December 2004)PermalinkSpectral enhancement of selected pixels in Thematic Mapper images of the Guanajuato district (Mexico) to identify hydrothermally altered rocks / M.A. Torres-Verra in International Journal of Remote Sensing IJRS, vol 24 n° 22 (November 2003)PermalinkRelationship between plant spectral reflectances and their image tonal responses on aerial photographs / D.E. Escobar in Geocarto international, vol 17 n° 2 (June - August 2002)Permalink