Descripteur
Termes IGN > sciences naturelles > physique > optique > optique physique > radiométrie > signature spectrale > réflectance > réflectance totale > réflectivité
réflectivité |
Documents disponibles dans cette catégorie (30)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
A CNN based approach for the point-light photometric stereo problem / Fotios Logothetis in International journal of computer vision, vol 131 n° 1 (January 2023)
[article]
Titre : A CNN based approach for the point-light photometric stereo problem Type de document : Article/Communication Auteurs : Fotios Logothetis, Auteur ; Roberto Mecca, Auteur ; Ignas Budvytis, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 101 - 120 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] distribution du coefficient de réflexion bidirectionnelle BRDF
[Termes IGN] éclairement lumineux
[Termes IGN] effet de profondeur cinétique
[Termes IGN] intensité lumineuse
[Termes IGN] itération
[Termes IGN] reconstruction 3D
[Termes IGN] réflectivité
[Termes IGN] stéréoscopie
[Termes IGN] vue perspectiveRésumé : (auteur) Reconstructing the 3D shape of an object using several images under different light sources is a very challenging task, especially when realistic assumptions such as light propagation and attenuation, perspective viewing geometry and specular light reflection are considered. Many of works tackling Photometric Stereo (PS) problems often relax most of the aforementioned assumptions. Especially they ignore specular reflection and global illumination effects. In this work, we propose a CNN-based approach capable of handling these realistic assumptions by leveraging recent improvements of deep neural networks for far-field Photometric Stereo and adapt them to the point light setup. We achieve this by employing an iterative procedure of point-light PS for shape estimation which has two main steps. Firstly we train a per-pixel CNN to predict surface normals from reflectance samples. Secondly, we compute the depth by integrating the normal field in order to iteratively estimate light directions and attenuation which is used to compensate the input images to compute reflectance samples for the next iteration. Our approach sigificantly outperforms the state-of-the-art on the DiLiGenT real world dataset. Furthermore, in order to measure the performance of our approach for near-field point-light source PS data, we introduce LUCES the first real-world ’dataset for near-fieLd point light soUrCe photomEtric Stereo’ of 14 objects of different materials were the effects of point light sources and perspective viewing are a lot more significant. Our approach also outperforms the competition on this dataset as well. Data and test code are available at the project page. Numéro de notice : A2023-048 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s11263-022-01689-3 Date de publication en ligne : 07/10/2022 En ligne : https://doi.org/10.1007/s11263-022-01689-3 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102364
in International journal of computer vision > vol 131 n° 1 (January 2023) . - pp 101 - 120[article]Automatic atmospheric correction for shortwave hyperspectral remote sensing data using a time-dependent deep neural network / Jian Sun in ISPRS Journal of photogrammetry and remote sensing, vol 174 (April 2021)
[article]
Titre : Automatic atmospheric correction for shortwave hyperspectral remote sensing data using a time-dependent deep neural network Type de document : Article/Communication Auteurs : Jian Sun, Auteur ; Fangcao Xu, Auteur ; Guido Cervone, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 117 - 131 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] correction atmosphérique
[Termes IGN] détection de cible
[Termes IGN] image hyperspectrale
[Termes IGN] modèle de transfert radiatif
[Termes IGN] rayonnement solaire
[Termes IGN] réflectivitéRésumé : (auteur) Atmospheric correction is an essential step in hyperspectral imaging and target detection from spectrometer remote sensing data. State-of-the-art atmospheric correction approaches either require extensive filed experiments or prior knowledge of atmospheric characteristics to improve the predicted accuracy, which are computational expensive and unsuitable for real time application. To take full advantages of remote sensing observation in quickly and reliably acquiring data for a large area, an automatic and efficient processing tool is required for atmospheric correction. In this paper, we propose a time-dependent neural network for automatic atmospheric correction and target detection using multi-scan hyperspectral data under different elevation angles. In addition to the total radiance, the collection day and time are also incorporated to improve the time-dependency of the network and represent the seasonal and diurnal characteristics of atmosphere and solar radiation. Results show that the proposed network has the capacity to accurately provide atmospheric characteristics and estimate precise reflectivity spectra with 95,72% averaged accuracy for different materials, including vegetation, sea ice, and ocean. Additional experiments are designed to investigate the network’s temporal dependency and performance on missing data. The error analysis confirms that our proposed network is capable of estimating atmospheric characteristics under both seasonally and diurnally varying environments and handling the influence of missing data. Both the predicted results and error analysis are promising and demonstrate that our network has the ability of providing accurate atmospheric correction and target detection in real time. Numéro de notice : A2021-208 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.02.007 Date de publication en ligne : 24/02/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.02.007 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97186
in ISPRS Journal of photogrammetry and remote sensing > vol 174 (April 2021) . - pp 117 - 131[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021041 SL Revue Centre de documentation Revues en salle Disponible 081-2021043 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2021042 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt G-band radar for humidity and cloud remote sensing / Ken B. Cooper in IEEE Transactions on geoscience and remote sensing, vol 59 n° 2 (February 2021)
[article]
Titre : G-band radar for humidity and cloud remote sensing Type de document : Article/Communication Auteurs : Ken B. Cooper, Auteur ; Richard J. Roy, Auteur ; Robert Dengler, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1106 - 1117 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] antenne radar
[Termes IGN] bruit thermique
[Termes IGN] humidité de l'air
[Termes IGN] modèle atmosphérique
[Termes IGN] nuage
[Termes IGN] rapport signal sur bruit
[Termes IGN] réflectivité
[Termes IGN] télédétection en hyperfréquenceRésumé : (auteur) VIPR (vapor in-cloud profiling radar) is a tunable G-band radar designed for humidity and cloud remote sensing. VIPR uses all-solid-state components and operates in a frequency-modulated continuous-wave (FMCW) radar mode, offering a transmit power of 200–300 mW. Its typical chirp bandwidth of 10 MHz over a center-frequency tuning span of 167–174.8 GHz results in a nominal range resolution of 15 m. The radar’s measured noise figure over the transmit band is between 7.4 and 10.4 dB, depending on its frequency and hardware configuration, and its calculated antenna gain is 58 dB. These parameters mean that with typical 1 ms chirp times, single-pulse cloud reflectivities as low as −26 dBZ are detectable with unity signal-to-noise at 5 km. Experimentally, radar returns from ice clouds above 10 km in height have been observed from the ground. VIPR’s absolute sensitivity was validated using a spherical metal target in the radar antenna’s far-field, and a G-band switch has been implemented in an RF calibration loop for periodic recalibration. The radar achieves high sensitivity with thermal noise limited detection both by virtue of its low-noise RF architecture and by using a quasioptical duplexing method that preserves ultrahigh transmit/receive isolation despite operation in an FMCW mode with a single primary antenna shared by the transmitter and receiver. Numéro de notice : A2021-112 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2995325 Date de publication en ligne : 04/06/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2995325 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96916
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 2 (February 2021) . - pp 1106 - 1117[article]
Titre : A scanning LiDAR for long range detection and tracking of UAVs Type de document : Thèse/HDR Auteurs : Alain Quentel, Auteur ; Yohan Dupuis, Directeur de thèse Editeur : Rouen : Université de Rouen Année de publication : 2021 Importance : 159 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse pour obtenir le diplôme de Doctorat, spécialité Electronique, microélectronique, optique et lasers, optoélectronique microondes robotiqueLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] drone
[Termes IGN] optimisation (mathématiques)
[Termes IGN] poursuite de cible
[Termes IGN] réflectivité
[Termes IGN] télémètre laser aéroporté
[Termes IGN] télémétrie laser aéroporté
[Termes IGN] temps de volIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Misuse of civil drones, or UAVs (unmanned aerial vehicles) has been a rising concern in the past few years. As a response, multiple systems including optics, electronics and even acoustics technologies have been developed for detection and tracking. Unfortunately, UAVs represent a challenging target to detect and track due to their small, decimetric size and large variability of shapes and behaviors. In this PhD, we developed and optimized a LiDAR (light detection and ranging) system to tackle this issue to distances up to a kilometer. In our system, range is acquired using the time of flight principle, and imagery done by sequentially scanning the scene with a dual-axis galvanometer. We took advantage of the scanning versatility to develop several operating modes. A standard detection mode captures the image of the scene using a raster-scan of large field of view. Tracking mode is based on a local pattern surrounding the target, which is updated at a very high rate to keep the target within its boundaries. Efforts were put into a theoretical and numerical optimization study of the numerous parameters involved in our scanning LiDAR, so as to reach sufficient performances in term of maximal range, localization resolution and rate. Pattern optimization for both detection and tracking mode was a primary focus, using the target probability of detection as the function to maximize. Target size, speed and reflectivity was also introduced in the probability of detection, giving a complete overview of the system performance. On our LiDAR platform, developed from the ground up, each component was characterized to enrich and validate our models. This prototype was tested for UAVs detection and tracking during several weeks of trials. Following this success, a pre-industrial integration process was launched and supervised by the candidate. Numéro de notice : 28535 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse de doctorat : Electronique, microélectronique, optique et lasers, optoélectronique microondes robotique : Rouen : 2021 Organisme de stage : Institut de Recherche en Systèmes Electroniques Embarqués DOI : sans En ligne : https://hal.science/tel-03228683 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99312 Calibration of frequency shift system of wind imaging interferometer / Yongqiang Sun in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 12 (December 2020)
[article]
Titre : Calibration of frequency shift system of wind imaging interferometer Type de document : Article/Communication Auteurs : Yongqiang Sun, Auteur ; Chunmin Zhang, Auteur ; Pengju Zhang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 153 - 160 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Acquisition d'image(s) et de donnée(s)
[Termes IGN] étalonnage d'instrument
[Termes IGN] fréquence
[Termes IGN] interféromètre
[Termes IGN] réflectivité
[Termes IGN] température
[Termes IGN] vent
[Termes IGN] vitesseRésumé : (Article) In this paper, the frequency shift system calibration of the wind imaging interferometer is analyzed. By establishing the frequency shift system vibration and reflectivity models, the single factor and comprehensive factors models are used to invert the wind speed and temperature, respectively. The parameters of the frequency shift system that meet the design accuracy requirement of the instrument are determined. The conclusion of this paper provides theoretical instructions for the calibration process of wind imaging interferometer. Numéro de notice : A2020-764 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.86.12.753 Date de publication en ligne : 01/12/2020 En ligne : https://doi.org/10.14358/PERS.86.12.753 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96563
in Photogrammetric Engineering & Remote Sensing, PERS > vol 86 n° 12 (December 2020) . - pp 153 - 160[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2020121 SL Revue Centre de documentation Revues en salle Disponible Restitution de profils verticaux de la distribution de gouttes de pluie à partir de mesures au sol et en altitude / Christophe Samboun (2020)PermalinkQuantification of the adjacency effect on measurements in the thermal infrared region / Xiaopo Zheng in IEEE Transactions on geoscience and remote sensing, vol 57 n° 12 (December 2019)PermalinkPavement marking retroreflectivity estimation and evaluation using mobile Lidar data / Erzhuo Che in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 8 (August 2019)PermalinkHyperspectral SAR / Matthew Ferrara in IEEE Transactions on geoscience and remote sensing, vol 55 n° 3 (March 2017)PermalinkRadiometric correction of airborne radar images over forested terrain with topography / Marc Simard in IEEE Transactions on geoscience and remote sensing, vol 54 n° 8 (August 2016)PermalinkStorm event representation and analysis based on a directed spatiotemporal graph model / W. Liu in International journal of geographical information science IJGIS, vol 30 n° 5-6 (May - June 2016)PermalinkCompressive sensing for multibaseline polarimetric SAR tomography of forested areas / Xinwu Li in IEEE Transactions on geoscience and remote sensing, vol 54 n° 1 (January 2016)PermalinkDigital surface model generation over urban areas using high resolution satellite SAR imagery : tomographic techniques and their application to 3-Dchange monitoring / Martina Porfiri (2016)PermalinkJoint estimation of moving target reflectivity and velocity via AT-InSAR systems based on complex interferometric data / Alessandra Budillon in ISPRS Journal of photogrammetry and remote sensing, vol 75 (January 2013)PermalinkBright-band detection from radar vertical reflectivity profiles / M.A. Rico-Ramirez in International Journal of Remote Sensing IJRS, vol 28 n°17-18 (September 2007)Permalink