Descripteur
Termes IGN > mathématiques > statistique mathématique > régression > régression non linéaire
régression non linéaire |
Documents disponibles dans cette catégorie (15)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Estimating crop type and yield of small holder fields in Burkina Faso using multi-day Sentinel-2 / Akiko Elders in Remote Sensing Applications: Society and Environment, RSASE, Vol 27 (August 2022)
[article]
Titre : Estimating crop type and yield of small holder fields in Burkina Faso using multi-day Sentinel-2 Type de document : Article/Communication Auteurs : Akiko Elders, Auteur ; Mark Carroll, Auteur ; Christopher S.R. Neigh, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 100820 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Burkina Faso
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] image Sentinel-MSI
[Termes IGN] parcelle agricole
[Termes IGN] régression harmonique
[Termes IGN] rendement agricole
[Termes IGN] variation saisonnièreRésumé : (auteur) Remote Sensing affords the opportunity to monitor and evaluate data scarce regions where field collection efforts are costly. A particular challenge is monitoring and evaluation in regions with smallholder agricultural systems (∼1 ha) that are often subsistence focused, vulnerable to food insecurity and data scarce. Using multi-day moderate resolution Sentinel-2 and Random Forest models, this study shows that crop type and rice yields in Burkina Faso can be predicted with greater than ∼80% accuracy in the rainy season. Model optimization using varying spectral and vegetation index inputs can increase crop type and yield prediction accuracy in the dry season where denser cultivation is a challenge for the 10–20 m resolution of Sentinel-2. However, there is a trade-off between opting for very high-resolution imagery ( Numéro de notice : A2022-624 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.rsase.2022.100820 Date de publication en ligne : 02/08/2022 En ligne : https://doi.org/10.1016/j.rsase.2022.100820 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101391
in Remote Sensing Applications: Society and Environment, RSASE > Vol 27 (August 2022) . - n° 100820[article]Problems with models assessing influences of tree size and inter-tree competitive processes on individual tree growth: a cautionary tale / P.W. West in Journal of Forestry Research, vol 33 n° 2 (April 2022)
[article]
Titre : Problems with models assessing influences of tree size and inter-tree competitive processes on individual tree growth: a cautionary tale Type de document : Article/Communication Auteurs : P.W. West, Auteur ; D.A. Ratkowsky, Auteur Année de publication : 2022 Article en page(s) : pp 565 - 577 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] arbre (flore)
[Termes IGN] Australie
[Termes IGN] croissance végétale
[Termes IGN] Eucalyptus pilularis
[Termes IGN] forêt équienne
[Termes IGN] hauteur des arbres
[Termes IGN] modèle de croissance végétale
[Termes IGN] régression non linéaire
[Termes IGN] surface terrière
[Vedettes matières IGN] ForesterieRésumé : (auteur) In forest growing at any one site, the growth rate of an individual tree is determined principally by its size, which reflects its metabolic capacity, and by competition from neighboring trees. Competitive effects of a tree may be proportional to its size; such competition is termed ‘symmetric’ and generally involves competition below ground for nutrients and water from the soil. Competition may also be ‘asymmetric’, where its effects are disproportionate to the size of the tree; this generally involves competition above ground for sunlight, when larger trees shade smaller, but the reverse cannot occur. This work examines three model systems often seen as exemplars relating individual tree growth rates to tree size and both competitive processes. Data of tree stem basal area growth rates in plots of even-aged, monoculture forest of blackbutt (Eucalyptus pilularis Smith) growing in sub-tropical eastern Australia were used to test these systems. It was found that none could distinguish between size and competitive effects at any time in any one stand and, thus, allow quantification of the contribution of each to explaining tree growth rates. They were prevented from doing so both by collinearity between the terms used to describe each of the effects and technical problems involved in the use of nonlinear least-squares regression to fit the models to any one data set. It is concluded that quite new approaches need to be devised if the effects on tree growth of tree size and competitive processes are to be quantified and modelled successfully. Numéro de notice : A2022-335 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1007/s11676-021-01395-9 Date de publication en ligne : 04/10/2021 En ligne : https://doi.org/10.1007/s11676-021-01395-9 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100673
in Journal of Forestry Research > vol 33 n° 2 (April 2022) . - pp 565 - 577[article]Evaluation of the mixed-effects model and quantile regression approaches for predicting tree height in larch (Larix olgensis) plantations in northeastern China / Longfei Xie in Canadian Journal of Forest Research, Vol 52 n° 3 (March 2022)
[article]
Titre : Evaluation of the mixed-effects model and quantile regression approaches for predicting tree height in larch (Larix olgensis) plantations in northeastern China Type de document : Article/Communication Auteurs : Longfei Xie, Auteur ; Faris Rafi Almay Widagdo, Auteur ; Zheng Miao, Auteur ; Lihu Dong, Auteur ; Fengri Li, Auteur Année de publication : 2022 Article en page(s) : pp 309 - 319 Note générale : bibliographie Langues : Français (fre) Anglais (eng) Descripteur : [Vedettes matières IGN] Statistiques
[Termes IGN] biométrie
[Termes IGN] Chine
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] hauteur des arbres
[Termes IGN] Larix olgensis
[Termes IGN] modèle de croissance végétale
[Termes IGN] modèle de simulation
[Termes IGN] régression non linéaire
[Termes IGN] régression par quantileRésumé : (auteur) Tree height (H) is one of the most important tree variables and is widely used in growth and yield models, and its measurement is often time-consuming and costly. Hence, height–diameter (H–D) models have become a great alternative, providing easy-to-use and accurate tools for H prediction. In this study, H–D models were developed for Larix olgensis A. Henry in northeastern China. The Chapman–Richards function with three predictors (diameter at breast height, dominant tree height, and relative size of individual trees) performed best. Nonlinear mixed-effects (NLME) models and nonlinear quantile regressions (NQR9, nine quantiles; NQR5, five quantiles; and NQR3, three quantiles) were further used and improved the generalized H–D model, successfully providing accurate H predictions. In addition, the H predictions were calibrated using several measurements from subsamples, which were obtained from different sampling designs and sizes. The results indicated that the predictive accuracy was higher when calibrated by using any number of height measurements for the NLME model and more than three height measurements for the NQR3, NQR5, and NQR9 models. The best sampling strategy for the NLME and NQR models involved sampling medium-sized trees. Overall, the newly developed H–D models can provide highly accurate height predictions for L. olgensis. Numéro de notice : A2022-313 Affiliation des auteurs : non IGN Autre URL associée : Draft Thématique : FORET/MATHEMATIQUE Nature : Article DOI : 10.1139/cjfr-2021-0184 En ligne : https://doi.org/10.1139/cjfr-2021-0184 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100412
in Canadian Journal of Forest Research > Vol 52 n° 3 (March 2022) . - pp 309 - 319[article]A novel regression method for harmonic analysis of time series / Qiang Zhou in ISPRS Journal of photogrammetry and remote sensing, vol 185 (March 2022)
[article]
Titre : A novel regression method for harmonic analysis of time series Type de document : Article/Communication Auteurs : Qiang Zhou, Auteur ; Zhe Zhu, Auteur ; George Xian, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 48 - 61 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] analyse harmonique
[Termes IGN] détection de changement
[Termes IGN] image Landsat-8
[Termes IGN] image Landsat-SWIR
[Termes IGN] modèle de régression
[Termes IGN] réflectance
[Termes IGN] régression harmonique
[Termes IGN] série temporelle
[Termes IGN] variation saisonnièreRésumé : (auteur) Harmonic analysis of time series is an important technique to reveal seasonal land surface dynamics using remote sensing information. However, frequency selection in the harmonic analysis is often difficult because high-frequency components are useful for delineating seasonal dynamics but sensitive to noise and gaps in time series. On the other hand, it is challenging to obtain temporally continuous satellite data with high quality because of atmospheric contamination. We developed a novel regression method named Harmonic Adaptive Penalty Operator (HAPO) for harmonic analysis of unevenly distributed time series. We introduced a new penalty function to minimize unexpected fluctuations in the model, which can substantially reduce the overfitting issue of regression in time series with temporal gaps. Specifically, the new penalty function minimizes the length of the model curve and the value range difference between the model and time series observations. We compared HAPO with three widely used regression methods (OLS: Ordinary Least Squares; LASSO: Least Absolute Shrinkage and Selection Operator; and Ridge) with different scenarios using Landsat time series data across the United States. First, we evaluated methods using Landsat surface reflectance time series within a single year. HAPO showed small and consistent monthly Root Mean Square Deviation (RMSD) values, in which most of the time RMSD values of predicted reflectance were less than 0.04. More importantly, HAPO showed consistent and less bias given varying density and irregularity of time series. Second, we evaluated methods using multi-year time series and the result suggested that HAPO was a better predictor of relatively short time series (less than4 years) with steady small RMSD values. When a longer time series (≥4 years) was used, all four methods disclosed similar RMSD values, but HAPO outperformed other three methods when there were temporal gaps. Last, we preliminarily tested how regression methods affected change detection and classification accuracy. HAPO showed the highest change detection accuracy of all tests in terms of F1 score when using the change threshold of 0.9999. In classification, HAPO produced the highest accuracy for short time series segments (one- or two-year time series). In contrast, all methods reached similar accuracy for 5-year time series. These results suggest that for areas that have large seasonal observation gaps or for time series that have less than 4 years records, HAPO can provide more consistent and accurate analytical results than other regression methods for harmonic analysis of time series. Numéro de notice : A2022-133 Affiliation des auteurs : non IGN Thématique : IMAGERIE/MATHEMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.01.006 Date de publication en ligne : 21/01/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.01.006 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99729
in ISPRS Journal of photogrammetry and remote sensing > vol 185 (March 2022) . - pp 48 - 61[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2022031 SL Revue Centre de documentation Revues en salle Disponible Model based signal processing techniques for nonconventional optical imaging systems / Daniele Picone (2021)
Titre : Model based signal processing techniques for nonconventional optical imaging systems Type de document : Thèse/HDR Auteurs : Daniele Picone, Auteur ; Mauro Dalla Mura, Directeur de thèse Editeur : Grenoble [France] : Université Grenoble Alpes Année de publication : 2021 Importance : 364 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse pour obtenir le grade de Docteur de l'Université Grenoble Alpes, spécialité : Signal Image Parole TélécomsLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] acquisition comprimée
[Termes IGN] fusion d'images
[Termes IGN] image hyperspectrale
[Termes IGN] inférence statistique
[Termes IGN] interférométrie
[Termes IGN] méthode du maximum de vraisemblance (estimation)
[Termes IGN] mosaïque d'images
[Termes IGN] pouvoir de résolution géométrique
[Termes IGN] pouvoir de résolution spectrale
[Termes IGN] problème inverse
[Termes IGN] reconstruction d'image
[Termes IGN] régression non linéaire
[Termes IGN] spectromètre imageur
[Termes IGN] traitement du signalIndex. décimale : THESE Thèses et HDR Résumé : (auteur) There is an increasing demand for images with higher spectral and spatial resolution for applications in several domains such as health, environment, quality checking and natural disasters monitoring. Hyperspectral imagery provides the necessary spectral diversity to recover the composition of materials on site for applications such as the detection of fires, anomalies, chemical agents, targets and changes in the scene.The requirement for cheaper and more compact devices (e.g. to be embarked on low cost satellites and airborne platform) which are capable of capturing this information has led to the development of nonconventional innovative design concepts to overcome the technological limitations of traditional cameras. Data acquired by such novel imaging devices following the computational imaging paradigm are typically not readily exploitable for the final application. A computational phase is hence needed for extracting useful information from the raw acquisitions.This thesis addresses this issue by setting up an inversion problem. The general approach is to characterize the data fidelity term with a physical model, describing the underlying optical transformations performed by the device. The challenge is then shifted on the regularization step to properly characterizes the features of the quantities of interest and improve the accuracy of the estimation, which can be tackled with variational techniques.The analysis is applied to two novel concepts for nonconventional optical devices. The first one is a novel compressed acquisition imaging system based on color filter arrays, which embeds information from sensors with different spatial and spectral characteristics into a single mosaiced product. As opposed to existing compressed sensing based devices, the goal is not to recover the original uncompressed multiresolution sources, but instead to directly recover a synthetic fused image with both high spatial and spectral resolution.The proposed solution relies on the total variation regularization and is the subject of a detailed analysis, comparing its compressive power with straightforward software alternatives, evaluating its performances as the amount of channels changes, and validating its efficiency in comparison to state of the art methods when applied to classical fusion or mosaicing algorithms separately.The second class of devices is based on the ImSPOC patent, a design concept for a low finesse snapshot imaging spectrometer based on the interferometry of Fabry-Pérot. Its ideal behaviour follows the principle of the Fourier Transform Spectroscopy, as its acquisition can be interpreted as a sampled version of an interferogram, arranged across different sub-images distributed on the same focal plane.After defining a physical model based on optical geometry, its validity is evaluated over real acquisitions by setting up a Bayesian inference problem to determine its parameters, with approaches based on maximum likelihood estimators, regular-grid searches and nonlinear regression.A variety of preliminary tests are then carried out on the inversion method, with approaches based on singular value decomposition and sparse-inducing regularizers, accompanied by a analysis of their robustness to model mismatches. Note de contenu : 1- Introduction
2- Inverse problems theory
3- Signal processing of multimodal data
4- Joint fusion and demosaicing of compressed multiresolution acquisitions
5- Optics foundations for the ImSPOC acquisition system
6- Data processing pipeline of ImSPOC acquisitions
7- ConclusionsNuméro de notice : 28691 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Signal Image Parole Télécoms : Grenoble : 2021 Organisme de stage : GIPSA-lab DOI : sans En ligne : https://hal.science/tel-03596486v1 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100170 Wheat leaf area index retrieval using RISAT-1 hybrid polarized SAR data / Thota Sivasankar in Geocarto international, Vol 35 n° 8 ([01/06/2020])PermalinkEffects of terrain slope and aspect on the error of ALS-based predictions of forest attributes / Hans Ole Ørka in Forestry, an international journal of forest research, vol 91 n° 2 (April 2018)PermalinkHarmonic regression of Landsat time series for modeling attributes from national forest inventory data / Barry T. Wilson in ISPRS Journal of photogrammetry and remote sensing, vol 137 (March 2018)PermalinkModeling the above and belowground biomass of planted and coppiced Eucalytpus globulus stands in NW Spain / Daniel J. Vega-Nieva in Annals of Forest Science, vol 72 n° 7 (October 2015)PermalinkPrediction of the presence of topsoil nitrogen from spaceborne hyperspectral data / Binny Gopal in Geocarto international, vol 30 n° 1 - 2 (January - February 2015)PermalinkNon-linear partial least square regression increases the estimation accuracy of grass nitrogen and phosphorus using in situ hyperspectral and environmental data / Abel Ramoelo in ISPRS Journal of photogrammetry and remote sensing, vol 82 (August 2013)PermalinkVisibility monitoring using conventional roadside cameras : Emerging applications / Raouf Babari in Transportation Research - Part C: Emerging Technologies, vol 22 (June 2012)PermalinkBiomass component equations for Latin American species and groups of species / José Návar in Annals of Forest Science, Vol 66 n° 2 (march 2009)PermalinkNicht-lineare Sensitivitätsanalyse gezeigt an Beispielen zu bewegten Objekten / Volker Schwieger (2005)PermalinkTélédétection spatiale / Centre national d'études spatiales (1990)Permalink